BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Łapczyński Mariusz (Kolegium Nauk o Zarządzaniu i Jakości), Sagan Adam (Kolegium Nauk o Zarządzaniu i Jakości)
Tytuł
Podejście entropijne w badaniach struktur rynkowych
The Entropic Approach in Market Structure Research
Źródło
Zeszyty Naukowe / Akademia Ekonomiczna w Krakowie, 2007, nr 739, s. 67-90, bibliogr. 19 poz.
Słowa kluczowe
Badanie rynku, Struktura rynku, Analiza rynku, Algorytmy, Analizy głównych komponentów
Market research, Market structure, Market analysis, Algorithms, Principal Component Analysis (PCA)
Uwagi
summ.
Abstrakt
Omówiono entropijne modele przestrzenne oraz przeprowadzono analizę niezależnych składowych. Przedstawiono entropię w metodach drzew klasyfikacyjnych, a także opisano aplikacje i implementacje drzew entropijnych.

The aim of this article is to identify alternative analytical tools based on entropy measures that could be used in market structure analysis. Entropy measures have long been present in marketing research, as is shown by, for instance, J. D. Herniter's models of predicting consumer purchasing behaviour or J. Carter and F. Silverman's analysis of preference shift matrices. Discussion of market structures is based on T. Elrod's popular definition, which states that the primary aim of this type of research is to identify complementary and substitutive products and to better understand competitiveness on the market. The authors of this article describes two methods - one for spatial analysis (independent component analysis) and the other for hierarchical analysis (classification trees). In the first part of the article, the authors briefly characterise the ICA method and describe the stages of the analytical procedure, indicating the advantages of this method over traditional principal component analysis. In the second part, the authors categorise classification tree algorithms based on the popular ID3 method and explain a method for estimating the measure known as information gain and the measure known as the gain ratio. The authors conclude by identifying the areas of theory and practice in which entropie methods have been applied. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
dostęp tylko z terenu Kampusu UEK
Bibliografia
Pokaż
  1. Allenby G.A., A Unified Approach to Identifying, Estimating and Testing Demand Structures with Aggregate Scanner Data, „Marketing Science” 1989, vol. 8, nr 3.
  2. Carter J., Silverman F., An Empirical Approach to Market Partitioning: Application to the Cigarette Market, „Journal of Targeting, Measurement and Analysis for Marketing” 2004, vol. 12.
  3. Cooper L.G., Inoue A., Building Market Structures from Consumer Preferences, „Journal of Marketing Research” 1996, vol. XXXIII.
  4. Cronan T.P., Glorfeld L.W., Perry L.G., Production System Development for Expert Systems Using a Recursive Partitioning Induction Approach: An Application to Mortgage, Commercial, and Consumer Lending, „Decision Sciences” 1991, vol. 2.
  5. Elrod T. i inni, Inferring Market Structure from Customer Response to Competing and Complementary Products, „Marketing Letters” 2000, vol. 13, nr 3.
  6. Foster D.P., Stine R.A., Variable Selection in Data Mining: Building a Predictive Model for Bankruptcy, „Journal of the American Statistical Association” 2004, vol. 99.
  7. Gatnar E., Nieparametryczna metoda dyskryminacji i regresji, PWN, Warszawa 2001.
  8. Gatnar E., Symboliczne metody klasyfikacji danych, PWN, Warszawa 1998.
  9. Gestwicki Р., IDЗ: History, Implementation, and Applications, October 1997, http:www. citeseer.nj.nec.com, data dostępu: 12.07.2004.
  10. Herniter J.D., An Entropy Model of Brand Purchase Behavior, „Journal of Marketing Research” 1973, vol. X.
  11. Hunt E.B., Martin J., Stone P.J., Experiment in Induction, Academic Press, New York 1966.
  12. Jutten C., Herrault J., Blind Separation of Sources: An Adaptive Algorithm Based on Neuromimetic Architecture, Signal Processing 1991, vol. 24.
  13. Liang T.-P., Chandler J.S., Han I., Roan J.,An Empirical Investigation of Some Data Effects on the Classification Accuracy of Probit, ID3, and Neural Networks, „Contemporary Accounting Research” 1992, vol. 9, nr l.
  14. Moore W.L., Winer R.S., A Panel-Data Based Method for Merging Joint Space and Market Response Function Estimation, „Marketing Science” 1987, vol. 6, nr 1.
  15. Pasztyła Α., Analiza kursów akcji z wykorzystaniem metody ICA [w:] Statystyka i data mining w praktyce, Statsoft, Warszawa-Kraków 2004.
  16. Quinlan J.R., C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, California 1993.
  17. Reutterer T., Competitive Market Structure and Segmentation Analysis with Self-Organizing Feature Maps [w:] Proceedings of the 27th EMAC Conference, Stockholm 20-23 May 1998, red. P. Andersson, Track 5: Marketing Research.
  18. Tam K.Y., Kiang M.Y., Managerial Applications of Neural Networks: The Case of Bank Failure Predictions, „Management Sciences” 1992, vol. 38, nr 7.
  19. Viaene S., Derrig R.A., Baesens В., Dedene G., A Comparison of State-of-the-Art Classification Techniques for Expert Automobile Insurance Claim Fraud Detection, „Journal of Risk and Insurance” 2002, vol. 69, nr 3.
Cytowane przez
Pokaż
ISSN
0208-7944
Język
pol
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu