BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Falniowski Fryderyk (Kolegium Ekonomii, Finansów i Prawa)
Title
Złożoność Grassbergera
Grassberger's Complexity
Source
Zeszyty Naukowe / Uniwersytet Ekonomiczny w Krakowie, 2008, nr 780, s. 71-83, rys., bibliogr. 17 poz.
Keyword
Entropia, Układy dynamiczne
Entropy, Dynamical systems
Note
summ.
Abstract
Praca ma na celu zbadanie własności złożoności Grassbergera dla miar probabilistycznych zdefiniowanych na przestrzeni ciągów nieskończonych, niezmienniczych względem przesunięcia. (fragment tekstu)

The problem of defining and studying the complexity of a given system has interested people for years. In the context of dynamical systems, Grassberger has suggested that a slow approach of entropy to its extensive asymptotic limit is a sign of complexity. He has introduced a measure of complexity called Effective Measure Complexity (EMC). Crutchfield and Packard have developed this idea in the field of information theory. This paper introduces their results in the field of ergodic theory and gives some new results for invariant measures defined on the full-shift and new formulas for EMC. (original abstract)
Accessibility
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of Poznań University of Economics and Business
The Main Library of the Wroclaw University of Economics
Full text
CUE campus access only
Bibliography
Show
  1. Blume F. [1997], Possible Rates of Entropy Convergence, „Ergodic Theory and Dynamical Systems”, vol. 17.
  2. Blume F. [1998], Minimal Rates of Entropy Convergence for Completely Ergodic Systems, „Israel Journal of Mathematics”, vol. 108.
  3. Crutchfield J.P., Feldman D.P. [1997], Statistical Complexity of Simple One-dimensional Spin Systems, „Physical Review E”, vol. 55.
  4. Crutchfield J.P., Feldman D.P. [2003], Regularities Unseen, Randomness Observed: Levels of Entropy Convergence, „Chaos”, vol. 15.
  5. Crutchfield J.P., Packard N.H. [1982a], Noise Scaling of Symbolic Dynamics Entropies, „Evolution of Order and Chaos”, ed. H. Haken, Springer-Verlag, Berlin.
  6. Crutchfield J.P, Packard N.H. [1982b], Symbolic Dynamics of One-dimensional Maps: Entropies, Finite Precision, and Noise, „International Journal of Theoretical Physics”, vol. 21.
  7. Crutchfield J.P., Packard N.H. [1983], Symbolic Dynamics of Noisy Chaos, „Physica D”, vol. 7.
  8. Dębowski L. [2005], Własności entropii nadwyżkowej dla procesów stochastycznych nad różnymi alfabetami, Rozprawa doktorska, IMPAN, Warszawa.
  9. Falniowski F. [2005], Zbieżność entropii, Praca magisterska, Uniwersytet Jagielloński, Kraków (maszynopis).
  10. Grassberger P. [1986], Toward a Quantitative Theory of Self-generated Complexity, „International Journal of Theoretical Physics”, vol. 25.
  11. Misiurewicz M., Ziemian K. [ 1987], Rate of Convergence for Computing Entropy of Some One-dimensional Maps, „Proceedings of Conference Ergodic Theory and Related Topics II’, Leipzig.
  12. Nowak M.A. [1998], Szybkość zbieżności entropii warunkowych i częściowych definicji entropii Kołmogorowa-Sinaja, Praca magisterska, Uniwersytet Jagielloński, Kraków (maszynopis).
  13. Parthasarathy K.R. [1978], Introduction to Probability and Measure, Springer-Verlag, New York.
  14. Shalizi C.R. [2001], Causal Architecture, Complexity and Self-organization for Time Series and Cellular Automata, Rozprawa doktorska, University of Wisconsin-Madison.
  15. Shaw R. [1984], The Dripping Faucet as a Model Chaotic System, Aerial Press, Santa Cruz, California.
  16. Słomczyński W. [2003], Dynamical Entropy, Markov Operators and Iterated Function Systems, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków.
  17. Szépfalusy P, Györgyi G. [1986], Entropy Decay as a Measure of Stochasticity in Chaotic Systems, „Physical Review A”, vol. 33.
Cited by
Show
ISSN
1898-6447
Language
pol
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu