BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Gatnar Eugeniusz (Akademia Ekonomiczna im. Karola Adamieckiego w Katowicach)
Title
Podział wielowymiarowej przestrzeni zmiennych a modele hybrydowe
Multidimensional Feature Space Partition and Hybrid Models
Source
Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 2009, nr 86, s. 20-30, rys., bibliogr. 15 poz.
Issue title
Wizualizacja wyników badań marketingowych : podejścia, metody i zastosowania
Keyword
Analiza danych statystycznych, Analiza dyskryminacyjna, Analiza regresji, Modele liniowe
Statistical data analysis, Discriminant analysis, Regression analysis, Linear models
Note
summ.
Abstract
Celem artykułu jest omówienie wyników zastosowania różnych typów modeli hybrydowych w analizie regresji oraz porównanie dokładności ich dopasowania do danych. (fragment tekstu)

Hybrid models are based on the recursive partitioning of multidimensional feature space into sub-spaces (regions). Then, in each segment a local model is built (e.g. linear model) and finally all the local models are combined into the global model. The aim of the paper is to discuss the results of application of different hybrid models in regression. The author compares the goodness of fit of the models to the training data. The paper also presents the portions of code of the R statistical package used in the author's experiments. (original abstract)
Accessibility
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of Poznań University of Economics and Business
The Main Library of the Wroclaw University of Economics
Szczecin University Main Library
Full text
Show
Bibliography
Show
  1. Breiman L., Friedman J., Olshen R., Stone C., Classification and Regression Trees, CRC Press, London 1984.
  2. Chan K.-Y., Loh W.-Y., LOTUS: An Algorithm for Building Accurate and Comprehensible Logistic Regression Trees, "Journal of Computational and Graphical Statistics", 2004, 13(4), s. 826-852.
  3. Chu C.-S., Hornik K., Kuan C.-M., MOSUM Tests for Parameter Constancy, "Biometrika" 1995, 82 , s. 603-617.
  4. Gama J., Functional Trees, "Machine Learning" 2004, 55, s. 219-250.
  5. Gatnar E., Nieparametryczna metoda dyskryminacji i regresji, Wydawnictwo Naukowe PWN, Warszawa 2001.
  6. Gatnar E., Podejście wielomodelowe w zagadnieniach dyskryminacji i regresji, Wydawnictwo Naukowe PWN, Warszawa 2008.
  7. Kim H., Loh W.-Y., Classification Trees with Unbiased Multiway Splits, "Journal of the American Statistical Association" 2001, 96, 589-604.
  8. Loh W.-Y, Shih Y.-S., Split Selection Methods for Classification Trees, "Statistica Sinica" 1997, 7, s. 815-840.
  9. Loh W.-Y, Regression Trees with Unbiased Variable Selection and Interaction Detection, "Statistica Sinica" 2002, 12, s. 361-386.
  10. Morgan J.N., Sonquist J.A., Problems in the Analysis of Survey Data: a Proposal, "Journal of the American Statistical Association" 1963, 58, s. 417-434.
  11. Nyblom J., Testing for the Constancy of Parameters Over Time, "Journal of the American" Statistical Association" 1989, 84, s. 223-230.
  12. Ploberger W., Krämer W., The CUSUM Test with OLS Residuals, "Econometrica" 1992, 60, s. 271-285.
  13. Therneau T.M., Atkinson E.J., An Introduction to Recursive Partitioning Using the RPART Routines, Mayo Foundation, Rochester 1997.
  14. Zeileis A., A Unified Approach to Structural Change Tests Based on ML Scores, F Statistics, and OLS Residuals, "Econometric Reviews" 2005, 24, s. 445-466.
  15. Zeileis A., Hothorn T., Hornik K., Model-based Recursive Partitioning, "Journal of Computational and Graphical Statistics" 2008, 17(2), s. 492-514.
Cited by
Show
ISSN
1899-3192
Language
pol
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu