- Author
- Galant Violetta (Akademia Ekonomiczna we Wrocławiu), Mach Maria (Akademia Ekonomiczna we Wrocławiu)
- Title
- Zastosowania algorytmów przyrostowego uczenia
- Source
- Prace Naukowe Akademii Ekonomicznej we Wrocławiu, 1999, nr 815, s. 110-117, bibliogr. 19 poz.
- Issue title
- Pozyskiwanie wiedzy z baz danych
- Keyword
- Algorytmy, Uczenie się, Materiały konferencyjne
Algorithms, Studying, Conference materials - Abstract
- Artykuł ma za zadanie przedstawienie możliwości zastosowań algorytmów przyrostowego uczenia. Zostaną one poprzedzone krótkim opisem samego procesu uczenia przyrostowego. Następnie zostanie zaprezentowany przegląd istniejących algorytmów tej klasy w rozbiciu na uczenie nadzorowane oraz bez nadzoru. Artykuł zakończy, przygotowany na podstawie studiów literaturowych, opis pierwszych prób implementacji systemów przyrostowego uczenia. (fragment tekstu)
- Accessibility
- The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of Poznań University of Economics and Business
The Main Library of the Wroclaw University of Economics - Bibliography
- Bareiss R., Porter B., PRO TOS: An Exemplar-based Learning Apprentice, Proceedings of the Fourth International Machine Learning Workshop. Morgan Kaufman, Irvine, USA, 1987.
- Case J., Jain S., Lange S., Zaugmann T., Incremental Concept Learning for Bounded Data Mining, Technical Report DOI-TR 136, Department of Informatics, Kyushu University, Fukuoka, Japonia, kwiecień 1997.
- Cheng T.-P., Towards a Formalization of Partial Domain Theories, Landmark Value Selection and Incremental Learning for Inductive Learning Systems, KSL Report KSL-89-53, June 1989.
- Devaney M., Ram A., Efficient Feature Selection in Conceptual Clustering, Proceedings of the Fourteenth International Conference on Machine Learning (ICML '97), Nashville, TN, 1997.
- Fisher D.H., Knowledge Acquisition via Incremental Conceptual Clustering, Machine Learning 2/1987, ss. 139-172.
- Fisher D.H., Schlimmer J.C., Models of Incremental Learning: A Coupled Research Proposal, Vanderbilt University Technical Report CS-88-05 (1988), http://cswww.vuse.vanderbilt.e-du/ ~ dfisher/courses/cs362/incl/proposal/proposal.html.
- Galant V., Tyburcy R., Wprowadzenie do przyrostowego uczenia, [w:] Baborski A. (red.), Pozyskiwanie wiedzy. Materiały konferencyjne, Wydawnictwo AE, Wrocław 1997.
- Jones G., Identifying Basic Categories, Psychological Bulletin, no. 4/1983.
- Langley P., Order Effects in Incremental Learning, [w:] Reinmann P., Spada H. (eds.), Learning in Humans and Machines: Towards an Interdisciplinary Learning Science, Elsevier Science 1995.
- Meesad P., Pattern Classification by an Incremental Learning Fuzzy Neural Network, nie publikowana praca dyplomowa, King Mongkut's Institute of Technology North Bankgok, Bangkok, Tajlandia, 1994 i Faculty of the Graduate College, Oklahoma State University, grudzień 1998; http://kmitnb05.kmitnb.ac.th/~pym/ilfn.html.
- Michalski R.S., Carboneil J.G., Mitchell T. (eds.), Machine Learning. An Artificial Intelligence Approach vol. II, Morgan Kaufman Publishers, Inc., Los Altos, California, USA 1986.
- Möller J.U., CLASSITALL: Incremental and Unsupervised Learning in the DIA-MOLE Framework, [w:] Daelemans W., Van den Bosch A., Weijters A., (eds.), Workshop Notes of the ECML/Mbiet Workshop on Empirical Learning of Natural Language Processing Tasks, 26 kwietnia 1997, Praga, Czechy.
- Neto J.P., Martins C., Almeida L., Speaker-adaptation in a Hybrid HMM-MIP Recognizer, materiały Instituto de Engenharia de Sistemas e Computadores i Institute Superior Tcnico, Lizbona, Portugalia.
- Reinke R.E., Michalski R.S., Incremental Learning of Concept Descriptions, Machine Intelligence 11/1986, Oxford University Press.
- Schlimmer J.C., Fisher D.H., A Case Study of Incremental Concept Induction, Proceedings of the Fifth International Conference on Artificial Intelligence, Filadelfia 1986.
- Utgoff P.E., An Improved Algorithm for Incremental Induction of Decision Trees, Machine Learning: Proceedings of the Eleventh International Conference, Morgan Kaufman Publishers, Inc., New Brunswick, NJ, 1994.
- Utgoff P.E., Berkman N.C., Clouse J.A., Decision Tree Induction Based on Efficient Tree Restructuring, Kluwer Academic Publishers, Boston, Technical Report 95-18, 1995.
- Utgoff P.E., ID5: An Incremental ID3, Technical Report 87-95, University of Massachusetts, Amherst, USA, 1987.
- Utgoff P.E., Incremental Induction of Decision Trees, Machine Learning no 4,1989, pp. 161-186.
- Cited by
- ISSN
- 0324-8445
- Language
- pol