BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Ceranka Bronisław (Poznan University of Life Sciences, Poland), Graczyk Małgorzata (Poznan University of Life Sciences, Poland)
Title
Notes on the Optimum Chemical Balance Weighing Design
Uwagi o optymalnym chemicznym układzie wagowym
Source
Acta Universitatis Lodziensis. Folia Oeconomica, 2012, t. 269, s. 91-101, bibliogr. 12 poz.
Issue title
Multivariate Statistical Analysis : Methodological Aspects and Applications
Keyword
Testy statystyczne, Chemiczny układ wagowy, Modele liniowe, Macierze
Statistical tests, Chemical balance weighing, Linear models, Matrix
Note
summ., streszcz.
Abstract
W pracy rozważa się model chemicznego układu wagowego, tzn. model w którym pomiar może być przedstawiony jako liniowa funkcja nieznanych miar obiektów o znanych współczynnikach. Dodatkowo zakłada się, że błędy wykonywanych pomiarów są nieskorelowane i mają różne wariancje. Naszym celem jest wyznaczenie nieznanych miar obiektów. W pracy podano warunki wyznaczające układ optymalny oraz konstrukcję macierzy, która opisuje sposób przeprowadzenia eksperymentu. (abstrakt oryginalny)

In the paper, the model of the chemical balance weighing design, i.e. model in that the result of experiment we can describe as linear function of unknown measurements of objects with known factors, is presented. Additionally, we assume that the measurement errors are uncorrelated and they have different variances. The problem is to estimate unknown measurements of objects. The existence conditions setting the optimum design and new construction method of the matrix determining the conditions of the experiment, are presented. (original abstract)
Accessibility
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of Poznań University of Economics and Business
The Main Library of the Wroclaw University of Economics
Full text
Show
Bibliography
Show
  1. Banerjee K.S. (1975), Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics, Marcel Dekker Inc., New York.
  2. Billington E.J. (1984), Balanced n-array designs: a combinatorial survey and some new results, Ars Combinatoria, 17, 37-72.
  3. Billington E.J., Robinson P.J. (1983), A list of balanced ternary designs with R<15 and some necessary existence conditions, Ars Combinatoria, 16, 235-258.
  4. Ceranka B., Graczyk M. (2003), Optimum chemical balance weighing designs. Tatra Mountains Math. Publ, 26, 49-57.
  5. Ceranka B., Graczyk M. (2004a), Balanced ternary block under the certain condition, Colloquium Biometryczne, 34, 63-75.
  6. Ceranka B., Graczyk M. (2004b), Balanced bipartite weighing design under the certain condition, Colloquium Biometryczne, 34a, 17-28.
  7. Ceranka B., Graczyk M. (2005), About relations between the parameters of the balanced bipartite weighing design, Proceedings of the Fifth Workshop on Simulation. S.M. Ermakov, V.B. Melas, A.N. Pepelyshev, Eds. Saint Petersburg University Publishers, 197-202.
  8. Huang Ch. (1976), Balanced bipartite block designs, Journal of Combinatorial Theory (A), 21, 20-34.
  9. Pukelsheim F. (1993), Optimal Design of Experiment, John Wiley and Sons, New York.
  10. Raghavarao D. (1971), Constructions and Combinatorial Problems in designs of Experiments, John Wiley Inc., New York. Shah K.R.
  11. Sinha B.K. (1989), Theory of Optimal Designs. Springer-Verlag, Berlin, Heidelberg.
  12. Wong C.S., Masaro J.C. (1984), A-optimal design matrices, Linear and Multilinear Algebra, 15, 23-46.
Cited by
Show
ISSN
0208-6018
Language
eng
URI / DOI
http://hdl.handle.net/11089/1887
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu