BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Jankowski Jarosław (Zachodniopomorski Uniwersytet Technologiczny w Szczecinie)
Identification of Web Platforms Usage Patterns with Dynamic Time Series Analysis Methods
Metody Ilościowe w Badaniach Ekonomicznych / Szkoła Główna Gospodarstwa Wiejskiego, 2011, vol. 12(XII), nr 1, s. 77-86, wykr., bibliogr. 27 poz.
Quantitative Methods in Economics
Serwisy społecznościowe, Użytkownicy internetu, Analiza szeregów czasowych
Social networking, Internet users, Time-series analysis
The paper proposes a new approach to modelling online social systems users' behaviours based on dynamic time wrap algorithm integrated with online system's databases. The proposed method can be applied in the field of community platforms, virtual worlds and massively multiplayer online systems to capture quantitative characteristic of usage patterns. (original abstract)
The Main Library of the Cracow University of Economics
Full text
  1. Acar A.S., Polonsky M. (2008) Online Social Networks and Insights into Marketing Communications, Journal of Internet Commerce, Volume 6, Issue 4, pp. 55-72.
  2. Antunes C.M., Oliveira A.L (2001) Temporal data mining: an overview. In: KDD Workshop on Temporal Data Mining, pp. 1-13, San Francisco.
  3. Beitzel S.M., Jensen E.C., Chowdhury A., Grossman D., Frieder O. (2004) Hourly Analysis of a Very Large Topically Categorized Web Query Log. In SIGIR 04, July 25- 29, Sheffield, pp. 321-328, South Yorkshire, UK.
  4. Chau M., Zeng D., Chen M., Huang M., Hendriawan D. (2003) Design and evaluation of a multi-agent collaborative Web mining system. Decisision Support Systems, vol. 35, no. 1, Elsevier Science Publishers, Amsterdam, The Netherlands.
  5. Chun-Ling Z., Zun-Feng L., Jing-Rui Y. (2010) The Application Research on Web Log Mining in E-Marketing. In: e-Business and Information System Security (EBISS), 2nd International Conference, 22-23 May, pp. 1- 4, Wuhan, China.
  6. Dick A.S., Basu K. (1994) Customer loyalty: toward an integrated conceptual framework. Journal of the Academy of Marketing Science Spring , Volume 22, Issue 2, pp. 99-113.
  7. Gomes M.F., Canuto A.M. (2006) Carcara: A Multi-agent System for Web Mining Using Adjustable User Profile and Dynamic Grouping. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 187-190.
  8. Gürsel A., Sen S. (2009) Producing Timely Recommendations From Social Networks. Proceedings of 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10-15, Budapest, Hungary.
  9. He J., Chu W.W. (2010) A Social Network Based Recommender System, Annuals of Information Systems (AoIS). Special Issue on Data Mining for Social Network Data, Volume 12.
  10. Hernández-Ortega B., Jiménez-Martínez J., Martín-DeHoyos M.J. (2008) Differences between potential, new and experienced e-customers: Analysis of e-purchasing behaviour. Internet Research, Volume 18, Issue 3, pp. 248-265.
  11. Herring S.C., Scheidt L.A., Wright E., Bonus S. (2005) Weblogs as a bridging genre, Information Technology & People. Volume 18, Issue 2, pp.142-171.
  12. Hu X., Yin Y., Zhang B. (2007) Mining Temporal Web Interesting Patterns, International Conference on Computational Intelligence and Security (CIS). pp. 227-231.
  13. Jung J.J. (2005) Visualizing Recommendation Flow on Social Network. Journal of Universal Computer Science, Volume 11, Issue 11, pp. 1780-1791.
  14. Karahanna E., Straub D.W., Chervany N.L. (1999) Information technology adoption across time: a cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Q., Volume 23, Issue 2, pp. 183-213.
  15. Kazienko P. (2009) Mining Indirect Association Rules for Web Recommendation. International Journal of Applied Mathematics and Computer Science, Volume 19, Issue 1, pp. 165-186.
  16. Lu H.P., Wang S. (2008) The role of Internet addiction in online game loyalty: an exploratory study. Internet Research, Volume 18, Issue 5, pp. 499-519.
  17. Marciniak R., Budnarowska C. (2009) Marketing Approaches to Pop Up Stores: An Exploration of Social Networking. In: 15th Conference of the European Association of Education and Research in Commercial Distribution (EAERCD), 15-17 July 2009, University of Surrey, England.
  18. Marsili M., Slanina F., Vega-Redondo F. (2004) Dynamics of social networks (the rise and fall of a networked society). Proceedings of the National Academy of Sciences, Volume 101, pp. 1439-1442.
  19. Newman M.E.J. (2006) Finding community structure in networks using the eigenvectors of matrices. Physical Review, Volume 74, Issue 3, pp. 798-817.
  20. Newman M.E.J., Girvan M. (2004) Finding and evaluating community structure in networks. Physical Review, Volume 69, Issue 2, pp. 1123-1138.
  21. Rabiner L.R., Juang B. (1993) Fundamentals of speech recognition. Prentice-Hall.
  22. Roddick J.F., Myra S. (2002) A Survey of Temporal Knowledge Discovery Paradigms and Methods. IEEE Transactions on Knowledge and Data Engineering, Volume 14, Issue 4, pp. 750-767.
  23. Tsai H., Huang H. (2007) Determinants of e-repurchase intentions: An integrative model of quadruple retention drivers, Information & Management. Volume 44, pp. 231-239.
  24. Venkatesh V., Morris M.G., Davis G.B., Davis F.D. (2003) User acceptance of information technology: Toward a unified view. MIS Quarterly, Volume 27, Issue 3, pp. 425-478.
  25. Wagner C., Bolloju N. (2005) Supporting knowledge management in organizations with conversational technologies. Journal of Database Management, Volume 16, Issue 2, April, pp. 1-8.
  26. Wangenheim F., Bayon T. (2004) Satisfaction, loyalty and word of mouth within the customer base of utility provider. Journal of Consumer Behaviour, Volume 3, Issue 3, March , pp. 211-220.
  27. Zhang Y., Jansen B.J., Spink A. (2009) Time series analysis of a Web search engine transaction log. Information Processing and Management, Volume 45, Issue 2, pp. 230-245.
Cited by
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu