BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
LeRoy Stephen F. (University of California, Santa Barbara, USA)
Title
Infinite Portfolio Strategies
Source
Contemporary Economics, 2012, vol. 6, nr 4, s. 54-60, bibliogr. 15 poz.
Keyword
Teoria portfolio, Zarządzanie portfolio
Portfolio theory, Portfolio management
Note
summ.
Abstract
In continuous-time stochastic calculus a limit in probability is used to extend the definition of the stochastic integral to the case where the integrand is not square-integrable at the endpoint of the time interval under consideration. When the extension is applied to portfolio strategies, absence of arbitrage in finite portfolio strategies is consistent with existence of arbitrage in infinite portfolio strategies. The doubling strategy is the most common example. We argue that this extension may or may not make economic sense, depending on whether or not one thinks that valuation should be continuous. We propose an alternative extension of the definition of the stochastic integral under which valuation is continuous and absence of arbitrage is preserved. The extension involves appending a date and state called to the payoff index set and altering the definition of convergence under which gains on infinite portfolio strategies are defined as limits of gains on finite portfolio strategies. (original abstract)
Full text
Show
Bibliography
Show
  1. Abel, A. B., Mankiw, N. G. , Summers, L. H. , & Zeckhauser, R. J. (1989). Assessing dynamic efficiency: Theory and evidence. Review of Economic Studies, 56(1), 1-20.
  2. Bewley, T. F. (1972). Existence of equilibria in economies with infinitely many commodities. Journal of Economic Theory, 4(3), 514-540.
  3. Cantrell, D.W. (n.d.). Affinely Extended Real Numbers. In MathWorld - A Wolfram Web Resource. Retrieved from http://mathworld.wolfram.com/AffinelyExtendedRealNumbers.html
  4. Chung, K. L. & Williams, R. J. (1990). Introduction to Stochastic Calculus. Boston, MA: Birkhauser.
  5. Delbaen, F. & Schachermayer, W. (2006). The Mathematics of Arbitrage. Berlin: Springer.
  6. Duffie, D. (1996). Dynamic Asset Pricing Theory, Second Edition. Princeton, NJ: Princeton University Press.
  7. Extended real number line (n.d). In Wikipedia. Retrieved from http://en.wikipedia.org/wiki/Extended_real_number_line
  8. Fisher, M. & Gilles, C. (2004), Weak Convergence and the Doubling Strategy. [reproduced]. Atlanta, GA: Federal Reserve Bank of Atlanta.
  9. Gilles, C. (1989). Charges as equilibrium prices, and asset bubbles. Journal of Mathematical Economics, 18(2), 155-167.
  10. Gilles, C. & LeRoy, S. F. (1992). Bubbles and charges. International Economic Review, 33(2), 323-339.
  11. Gilles, C. & LeRoy, S. F. (1997). Bubbles as payoffs at infinity. Economic Theory, 9(2), 261-281.
  12. Huang, K. X. D. & Werner, J. (2000). Asset price bubbles in Arrow-Debreu and sequential equilibrium. Economic Theory, 15(2), 253-278.
  13. LeRoy, S. F. & Werner, J. (2001). Principles of Financial Economics. Cambridge: Cambridge University Press.
  14. Royden, H. L. (1968). Real Analysis: Second Edition. New York, NY: Macmillan.
  15. Santos, M. & Woodford, M. (1997). Rational asset pricing bubbles. Econometrica, 65(1), 19-57.
Cited by
Show
ISSN
2084-0845
Language
eng
URI / DOI
http://dx.doi.org/10.5709/ce.1897-9254.68
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu