- Author
- Białowolski Piotr (Warsaw School of Economics, Poland), Kuszewski Tomasz (University of Finance and Management in Warsaw, Poland), Witkowski Bartosz (Warsaw School of Economics, Poland)
- Title
- Macroeconomic Forecasts in Models with Bayesian Averaging of Classical Estimates
- Source
- Contemporary Economics, 2012, vol. 6, nr 1, s. 60-69, tab., bibliogr. 26 poz.
- Keyword
- Prognozowanie, Sezonowość
Forecasting, Seasonal character - Note
- summ.
- Abstract
- The aim of this paper is to construct a forecasting model oriented on predicting basic macroeconomic variables, namely: the GDP growth rate, the unemployment rate, and the consumer price inflation. In order to select the set of the best regressors, Bayesian Averaging of Classical Estimators (BACE) is employed. The models are atheoretical (i.e. they do not reflect causal relationships postulated by the macroeconomic theory) and the role of regressors is played by business and consumer tendency survey-based indicators. Additionally, survey-based indicators are included with a lag that enables to forecast the variables of interest (GDP, unemployment, and inflation) for the four forthcoming quarters without the need to make any additional assumptions concerning the values of predictor variables in the forecast period. Bayesian Averaging of Classical Estimators is a method allowing for full and controlled overview of all econometric models which can be obtained out of a particular set of regressors. In this paper authors describe the method of generating a family of econometric models and the procedure for selection of a final forecasting model. Verification of the procedure is performed by means of out-of-sample forecasts of main economic variables for the quarters of 2011. The accuracy of the forecasts implies that there is still a need to search for new solutions in the atheoretical modelling. (original abstract)
- Full text
- Show
- Bibliography
- Anuszewska I. (2010). Sondaże - zwierciadło społeczeństwa. Rytuały komunikacyjne a kreowanie wiedzy wspólnej [Surveys - the Reflection of Society. Communication Rituals and Formation of Common Knowledge]. Warszawa: Wydawnictwo Fachowe CeDeWu.pl.
- Adamowicz, E., & Walczyk, K. (2011). Koniunktura w przemyśle - Polska, styczeń 2011 [The Economic Situation in Manufacturing Industry- Poland, January 2011]. Warszawa: Instytut Rozwoju Gospodarczego SGH.
- Białowolski P., Drozdowicz-Bieć M. (Ed.), Lada K., Pater, R., Zwiernik P., Żochowski D., (2007). Forecasting with composite coincident and leading indexes and the CLIMA model. Warsaw: Warsaw School of Economics.
- Białowolski, P., Kuszewski, T., Witkowski, B. (2010). Prognozy kombinowane wskaźników makroekonomicznych z użyciem danych z testów koniunktury [Combined Forecasts of Macroeconomic Indicators with Business Survey Data]. Współczesna Ekonomia, 4(16), 41-58.
- Białowolski, P., Kuszewski, T., Witkowski, B., (2011). Prognozy podstawowych wskaźników makroekonomicznych z użyciem danych z testów koniunktury [Forecast of Basic Macroeconomic Indicators with the Use of Business Survey Data], IV Konferencja Naukowa Modelowanie i Prognozowanie Gospodarki Narodowej. Uniwersytet Gdański, Wydział Zarządzania, Gdańsk.
- Białowolski, P., & Dudek, S. (2010). Kondycja gospodarstw domowych - badanie okresowe II kwartał 2010 [The State of the Households - Periodic Survey: 2nd Quarter of 2010]. Warszawa: Instytut Rozwoju Gospodarczego SGH.
- Białowolski, P., & Żochowski, D. (2006), Analiza własności prognostycznych komponentów WPI. W: Wskaźniki wyprzedzające [The Analysis of Forecast Properties of the Future Inflation Index. In: Leading Indicators]. Prace i Materiały Instytutu Rozwoju Gospodarczego SGH. Warszawa: Instytut Rozwoju Gospodarczego SGH.
- Bieć M. (1996). Test koniunktury - metody, techniki, doświadczenia [Economic Tendency Surveys - Methods, Techniques, Experiments]. Prace i Materiały Instytutu Rozwoju Gospodarczego, zeszyt 48. Warszawa: Instytut Rozwoju Gospodarczego SGH.
- Boivin, S. & Ng, S. (2005). Understanding and comparing, factor-based forecasts. International Journal of Central Banking. December, 117-151.
- Canova F., & Ghysels E. (1994). Changes in seasonal patterns. Are they cyclical? Journal of Economic Dynamics & Control, 18, 1143-1171.
- Cooley, T.F. & LeRoy, S.F. (1985). Atheoretical macroeconomics: a critique. Journal of Monetary Economics, 16(3), 283-308.
- Diebold F.X. (1998). The past, present and future of macroeconomic forecasting. The Journal of Economic Perspectives, 12(2), 175-192.
- European Commission (2006). The joint harmonised EU programme of business and consumer surveys. European economy - Report and studies No 5. Bruksela: Belgia.
- Forni, M. & Reichlin, L. (1998). Let's get real: a factor analytical approach to disaggregateg business cycle dynamics. The Review of Economic Studies, 65, 453-473.
- Gorzelak, E., & Zimny, Z. (2010), Koniunktura w rolnictwie. Badanie okresowe - II kwartał 2010 [The Economic Situation of Agriculture. Periodic Study for the 2nd Quarter of 2010]. Warszawa: Instytut Rozwoju Gospodarczego SGH.
- Hansson J., Jansson, M., & Lof M. (2003). Business survey data: do they help in forecasting the macro economy? Working Paper 84. Stockholm: The National Institute of Economic Research,
- Majchrzak, K. (2010). Koniunktura w handlu. Badanie okresowe - II kwartał 2010 [The Economic Situation of Trade. Periodic Study for the 2nd Quarter of 2010]. Warszawa: Instytut Rozwoju Gospodarczego SGH.
- OECD (2003). Business tendency surveys - a handbook. Paris: OECD.
- Pater, R. (2006). Analiza przebiegu i wskazań wskaźnika rynku pracy. W: Wskaźniki wyprzedzające [The Analysis of Labour Market Index. In: Leading Indicators], Prace i Materiały Instytutu Rozwoju Gospodarczego SGH. Warszawa: Instytut Rozwoju Gospodarczego SGH.
- Podgórska, M. (2010). Koniunktura w budownictwie. Badanie okresowe - II kwartał 2010 [The Economic Situation of Construction Industry. Periodic Study for the 2nd Quarter of 2010]. Warszawa: Instytut Rozwoju Gospodarczego SGH.
- Sala-i-Martin X., Doppelhofer G., Miller R. (2004). Determinants of long-term growth: a bayesian averaging of classical estimates (BACE) approach. American Economic Review, 94, 813-835.
- Sargent, T., & Sims, C.A. (1977). Business cycle modeling without pretending to have too much a-priori economic theory. In: C. Sims (Ed.), New methods in business cycle research. Minneapolis, MN: Federal Reserve Bank of Minneapolis.
- Sims, C.A. (1980). Macroeconomics and reality. Econometrica, 48, 1-48.
- Stadelmann D. (2010). Which factors capitalize into house prices? A bayesian averaging approach. Journal of Housing Economics, 19(3), 180-204.
- Stock, J. & Watson, M. (2002). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97, 1167-1179.
- Zarnovitz, V. (1992), Business cycles: theory, history, indicators and forecasting. Chicago, IL: National Bureau of Economic Research.
- Cited by
- ISSN
- 2084-0845
- Language
- eng
- URI / DOI
- http://dx.doi.org/10.5709/ce.1897-9254.34