BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Paloviita Maritta (Bank of Finland), Viren Matti (Bank of Finland; University of Turku)
Title
How Do Individual Forecasters Change Their Views? An Analysis with Micro Panel Data
W jaki sposób prognostycy zmieniają poglądy? Analiza na podstawie mikrodanych panelowych
Source
Acta Universitatis Lodziensis. Folia Oeconomica, 2013, t. 295, s. 79-92, tab., rys., bibliogr. 15 poz.
Issue title
Financial Markets and Macroprudential Policy
Keyword
Prognozowanie, Badania statystyczne, Dane panelowe
Forecasting, Statistical surveys, Panel data
Abstract
Przeanalizowano zachowanie się poszczególnych ośrodków prognostycznych ujętych w prognozach Consensus Forecast dla inflacji w USA. Starano się określić, czy poszczególne prognozy systematycznie odbiegają od siebie. W szczególności zbadano, czy ranking ośrodków jest taki sam w czasie. Pełny zestaw danych obejmuje 74 prognostyków w okresie 1989M10-2011M3. Wyniki wyraźnie wskazują, że prognostycy zachowują się bardzo konsekwentnie tak, że na przykład, ranking ośrodków nie zmienia się w czasie. Ponadto pokazano, że prognostycy są zgodni co do hybrydowej postaci neokeynesowskiej krzywej Phillipsa oraz że różnice pomiędzy nimi są dodatnio skorelowane z wielkością błędów prognozy. (abstrakt oryginalny)

This paper scrutinizes the behavior of individual forecasters included in the Consensus Forecast inflation data for the US. More precisely, we try to determine whether individual forecasters deviate systematically from each other. We examine whether the ranking of forecasters is the same over time. The full micro data set includes 74 forecasters over the period 1989M10-2011M3. The results clearly indicate that the forecasters behave quite persistently so that, for instance, the ranking of forecasters does not change over time. Even so, we also find that the survey values imply reasonable values for the hybrid form of the New Keynesian Phillips curve and that forecaster's disagreement is positively related to the size of forecast errors. (original abstract)
Accessibility
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of Poznań University of Economics and Business
The Main Library of the Wroclaw University of Economics
Full text
Show
Bibliography
Show
  1. Adam K. and Padula M. (2009), Inflation Dynamics and Subjective Expectations in the United States, Economic Inquiry, 49 (1), 13-25.
  2. Canova F. and Gambetti L. (2010), Do Expectations Matter? The Great Moderation Revisited, American Economic Journal, American Economic Association, 2(3), 183-205.
  3. Christensen C., van Els P. and van Rooij M. (2006), Dutch Households' Perceptions of Economic Growth and Inflation, De Economist, vol. 154(2), 277-294.
  4. Dovern J., Fritsche U. and Slacalek J. (2012), Disagreement Among Forecaster in G7 Countries, The Review of Economics and Statistics, vol. 94(4), 1081-1096.
  5. Dopke J. and Fritsche U. (2006), When Do Forecasters Disagree? An Assessment of German Growth and Inflation Forecast Dispersion, International Journal of Forecasting, 22, 125-135.
  6. Fendel R., Lis E. and Rulke J.C. (2011), Do professional forecasters believe in the Phillips curve? Evidence from G7 countries, Journal of Forecasting, 30, 268-287.
  7. Gamber E., Smith J. and Weiss M. (2011), Forecast errors before and during Great Moderation, Journal of Economics and Business, vol. 63(4), 278-289.
  8. Gerlach S. (2007), Interest Rate Setting by the ECB, 1999-2006: Words and Deeds, International Journal of Central Banking, September, 1-42, 389-439.
  9. Kaufmann D. (2009), Price-setting behaviour in Switzerland: evidence from CPI micro data, Swiss Journal of Economics and Statistics, 145, 293-349.
  10. Kortelainen M., Paloviita M. and Viren M. (2011), Observed Inflation Forecasts and the New Keynesian macro Model, Economics Letters, 112(1), 88-90.
  11. Koberl E. and Lein S. (2011), The NIRCU and the Phillips curve: an approach based on micro data, Canadian Journal of Economics, 44(2), 673-694.
  12. Lahiri K. and Sheng X. (2010), Measuring Forecast Uncertainty by Disagreement: The Missing Link, Journal of Applied Econometrics, vol. 25(4), 514-538.
  13. Lein S. (2010), When do firms adjust prices? Evidence from micro panel data, Journal of Monetary Economics, 57, 696-715.
  14. Mankiw N. G., Reis R. and Wolfers J. (2003), Disagreement about Inflation Expectations, NBER Working Paper 9796.
  15. Siegel J. (1956), Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill, 2. Edition, New York.
Cited by
Show
ISSN
0208-6018
Language
eng
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu