BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Oczadły Tomasz (Wrocław University of Economics, Poland)
Quasi-Monte Carlo Method in Pricing Barrier Options
FindEcon Monograph Series : advances in financial market analysis, 2006, nr 2, s. 169-181, rys., tab., bibliogr. s. 181
Issue title
Financial markets : principles of modeling forecasting and decision-making
Metoda Monte Carlo, Wycena opcji, Zarządzanie ryzykiem finansowym
Monte Carlo method, Options pricing, Financial risk management
Chapter 10 shows the basic idea of quasi-Monte Carlo methods. These methods differ from ordinary Monte Carlo method in that they make no attempt to mimic randomness. They are based on the idea that random Monte Carlo techniques can often be improved by replacing the underlying source of random numbers with a more uniformly distributed deterministic sequence. Low-discrepancy methods have the potential to accelerate convergence under appropriate conditions. In an example using randomized quasi-Monte Carlo methods it was possible to achieve faster convergence of the option price. (fragment of text)
The Main Library of the Cracow University of Economics
The Main Library of Poznań University of Economics and Business
Full text
  1. Carr P., Ellis K. (1998), "Static Hedging of Exotic Options", Journal of Finance, 53(3), 1998.
  2. Faure H. (1992), "Discrèpance de suites associees à un système de numération (en dimension s)", Acta Arithmetica, 41, 337-351.
  3. Glasserman P. (2002), Monte Carlo Methods in Financial Engineering, New York: Wiley & Sons.
  4. Halton J. H. (1960), "On the Efficiency of Certain Quasi-Random Sequences of Points in Evaluating Multi-dimensional Integrals", Numerische Mathematik, 2, 84-90.
  5. Haug E. G. (1997), The Complete Guide to Option Pricing Formulas, New York: McGraw-Hill.
  6. Hull J. C. (1999), Options, Futures and Other Derivatives, Englewood: Prentice-Hall.
  7. Jackel P. (2003), Monte Carlo Methods in Finance, Hoboken: Springer-Verlag.
  8. Niederreiter H. (1992), Random Number Generation and Quasi-Monte Carlo Methods, Philadelphia: SI AM.
  9. Owen A. B. (1997), "Scrambled Net Variance for Integrals of Smooth Functions", Annals of Statistics, 25, 1541-1562.
  10. Sobol I. M. (1967), "The Distribution of Points in a Cube and Approximate Evaluation of Integrals", Computational Mathematics and Mathematical Physics, 7, 784-802.
  11. Sobol I. M. (1994), A Primer for the Monte Carlo Method, Boca Raton: CRC Press.
  12. Tan K. S., Boyle P. P. (1997), "Applications of Scrambled Low Discrepancy Sequences to Exotic Options",
  13. Zhang P. G. (2001), Exotic Options. A Guide to second Generation Options, Singapore: World Scientific Publishing.
  14. Zieliński R. (1970), Metody Monte Carlo (Monte Carlo Methods), Warszawa: WNT.
  15. Zieliński R. (1997), Komputerowe generowanie liczb pseudolosowych, (Computer Methods for Random Numbers Generation), Warszawa: WNT.
Cited by
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu