BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Sitarz Sebastian
Metrics in the Compromise Hypersphere Method
Multiple Criteria Decision Making / University of Economics in Katowice, 2008, vol. 3, s. 223-232, rys., tab., bibliogr. 11 poz.
Optymalizacja wielokryterialna, Programowanie liniowe, Programowanie matematyczne
Multiple criteria optimization, Linear programming, Mathematical programming
summ., Korespondencja z redakcją: numeracja wpisana za zgodą redakcji (wynika z ciągłości wydawniczej serii MCDM) - brak numeracji na stronie tytułowej
Compromise programming is one of the most often applied methods of multi-criteria optimization, both discrete and continuous. This paper deals with decision making in multicriteria linear programming problems. The approach presented here is based on finding a hypersphere (in the criteria space), which minimalizes the distance from the set of all nondominated extreme points. Next, we look for the nondominated extreme point closest to the hypersphere found previously. This point, called the best compromise nondominated solution, depends on the chosen metric. We consider the method of compromise hypersphere with different metrics and analyze their influence on the best compromise nondominated solution.(original abstract)
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of Poznań University of Economics and Business
Full text
  1. Abdelaziz F.B., Aouni B., El Fayedh R.: Multi-Objective Stochastic Programming for Portfolio Selection. "European Journal of Operational Research" 2007, 177, pp. 1811-1823.
  2. Anthony G.T., Bittner B., Butler B.P., Cox M.G., Elligsen R., Forbes A.B., Gross H., Hannaby S.A., Harris P.M., Kok J.: Chebychev Reference Software for Evaluation of Coordinate Measuring Machine Data. Report EUR 15304 EN. National Physical Laboratory, Teddington 1993.
  3. Ballestro E., Romero C.: Weighting in Compromise Programming: A Theory on Shadow Process. "Operations Research Letters" 1993, 13, pp. 325-329.
  4. Ballestro E.: Selecting the CP Metric: A Risk Aversion Approach. "European Journal of Operational Research" 1996, 97, pp. 593-596.
  5. Carrizosa E., Conde E., Pacual A., Romero-Morales D.: Closest Solutions in Ideal-Point Methods. In: Advances in Multiple Objective and Goal Programming. Eds. R. Caballero, F. Ruiz, R.E. Steuer. LNEMS 455, Springer Verlag, Berlin 1996, pp. 274-281.
  6. Butler B.P., Forbes A.B., Harris P.M.: Algorithms for Geometric Tolerance Assessment. NPL Report DITC 228/94. National Physical Laboratory, Teddington 1994.
  7. Gass S.I., Harary H.H., Witzgall C.: Fitting Circles and Spheres to Coordinate Measuring Machine Data. "International Journal of Flexible Manufacturing" 1998, 10, pp. 5-25.
  8. Gass S.I., Roy P.G.: The Compromise Hypersphere for Multiobjective Linear Programming. "European Journal of Operational Research" 2003, 144, pp. 459-479.
  9. Opricovic S., Tzeng G.H.: Compromise Solution by MCDM Methods: A Comparative Analysis of VIKOR and TOPSIS. "European Journal of Operational Research" 2004, 156, pp. 445-455.
  10. Steuer R.E., Choo E.: An Interactive Weighted Tchebycheff Procedure for Multiple Objective Programming. "Mathematical Programming" 1981, 26, pp. 326-344.
  11. Steuer R.: Multiple Criteria Optimization Theory: Computation and Application. John Willey, New York 1986.
Cited by
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu