BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Zaraś Kazimierz, Kane Hamdjatou (Université du Quebec en Outaouais, Canada), Nowak Maciej (The Karol Adamiecki University of Economics in Katowice, Poland)
Production Planning and Control : An Approach Based on Rough Sets
Multiple Criteria Decision Making / University of Economics in Katowice, 2007, vol. 2, s. 57-72, tab., bibliogr. 18 poz.
Planowanie produkcji, Kontrola produkcji, Zbiory przybliżone, Teoria zbiorów przybliżonych, Metoda Just in Time, Systemy workflow, Dominacja stochastyczna, Technika Kanban
Production planning, Production control, Rough sets, Rough set theory, Just in Time method, Workflow systems, Stochastic dominance, Kanban technique
summ., Korespondencja z redakcją: numeracja wpisana za zgodą redakcji (wynika z ciągłości wydawniczej serii MCDM) - brak numeracji na stronie tytułowej
This paper deals with the problem of production process control in a job shop where the work flow is controlled by Kaban cards. Production may proceed differently according to a lot size, number of Kanban cards used, and the decision rule for choosing the waiting job to process. The problem that arises consists in deciding which rule should be used, how many Kanbans should be allocated for each operation, and what lot size should be applied. Thus, the choice of the best triplet constitutes a multicriteria problem. We propose to solve the multicriteria problem by using Rough Set Approach. Based on the choice of the operator and using the dominance-based rough set approach we will be able to induce the decision rules, which can be applied to choose the best triplet from a large number of alternatives. (original abstract)
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of Poznań University of Economics and Business
Full text
  1. Goovaerts M.J., de Vylder F., Haezendonck J.: Insurance premiums: Theory and Applications. North-Holland, Amsterdam 1984.
  2. Gravel, M., Martel, J.M., Nadeau, R., Price, W. and Tremblay, R. A multicriterion view of optimal resource allocation in job-shop production. "European Journal of Operational Research" 1992, 61, pp. 230-244.
  3. Gravel, M. and Price W.L.: Visual Interactive Simulation Shows How to Use the Kanban Method in Small Business. "Interfaces" 1991, 21, pp. 22-33.
  4. Gravel M. and Price W.L.: Using the Kanban in job shop environment. "International Journal of Production Research" 1988, 26, pp.1105-1118.
  5. Greco S., Matarazzo B. and Słowinski R.: Rough approximation of a preference relation by dominance relations. "European Journal of Operational Research" 1999, 117, pp. 63-83.
  6. Huang C.C., Kira D. and Vertinsky I.: Stochastic dominance rules for multiattribute utility functions. "Review of Economics Studies" 1978, 41, pp. 611-616.
  7. Kahneman D. and Tversky A.: Prospect theory: an analysis of decisions under risk. "Econometrica" 1979, 47, pp. 262-291.
  8. Li J.W.: Investigating the efficacy of exercising JIT practices to support pull production control in a job shop environment. "Journal of Manufacturing Technology Management" 2005, Vol. 16, Issue 7, pp. 765-783.
  9. Li J.W. and Barnes D.J.: Investigating the factors influencing the shop performance in a job shop environment with kanban-based production control. "International Journal of Production Research" 2000, Vol. 38, No 18, pp. 4683-4699.
  10. Martel J.M. and Zaras K".: Une méthode multicritère de rangement de projets face au risque. "MS/OR Division" 1995, Vol. 16, No 2, pp. 135-144.
  11. Nowak M., Trzaskalik T., Trzpiot G. and Zaras K. : Inverse stochastic dominance and its application in production process control. In: Multiple Objective and Goal Programming. Recent Developments. Eds. Trzaskalik T., Michnik J. Physica-Verlag, Heidelberg 2002, pp. 362-376.
  12. Nowak M.: Wielokryterialne wspomaganie sterowania procesem produkcyjnym z wykorzystaniem dominacji stochastycznych. Ph.D. thesis. AE, Katowice 2002.
  13. Roy B.: Méthodologie Multicritère d'Aide à la Décision. Economica, Paris 1985.
  14. Zaras K.: Rough approximation of a preference relation by multi-attribute stochastic dominance for deterministic, stochastic and fuzzy decisions problems. "European Journal of operational Research" 2004, 159, pp. 196-206.
  15. Zaras K.: Rough approximation of a preference relation by multi-attribute stochastic dominance for deterministic and stochastic evaluations problems. "European Journal of operational Research" 2001, 130, pp. 305-314.
  16. Zaras K.: Rough approximation of pairwise comparisons described by a multiattribute stochastic dominance. "Multicriteria Journal of Decision Analysis" 1999, 8, pp. 291-297.
  17. Zaras K. and Martel J.M.: Multi-attribute analysis based on stochastic dominance. In: Models and Experiments in Risk and Rationality. Eds. Munier B., Machina M.J. Kluwer Academic Publishers, Dordrecht 1994, pp. 225-248.
  18. Zaras K.: Les dominances stochastiques pour deux classes de fonction d'utilité: concaves et convexes. "RAIRO/RO" 1989, Vol. 23, No 1, pp. 57-65.
Cited by
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu