BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Skulimowski Andrzej M.J.
On Multicriteria Problems with Modification of Attributes
Multiple Criteria Decision Making / University of Economics in Katowice, 2007, vol. 2, s. 117-136, bibliogr. 9 poz.
Optymalizacja wielokryterialna, Podejmowanie decyzji, Optymalizacja matematyczna, Programowanie dynamiczne, Programowanie matematyczne, Modele matematyczne
Multiple criteria optimization, Decision making, Mathematical optimization, Dynamic programming, Mathematical programming, Mathematical models
summ., Korespondencja z redakcją: numeracja wpisana za zgodą redakcji (wynika z ciągłości wydawniczej serii MCDM) - brak numeracji na stronie tytułowej
In this paper we propose a mathematical model for multicriteria decision problems with alternatives which may change their properties in a direct response to external actions. We assume that the change of attributes may be controlled by the decision-maker taking into account that an improvement of the criteria values bears certain cost. Thus we get a bi-level multicriteria optimization problem: an optimal allocation of resources at the lower level, and finding the related nondominated outputs surpassing a reference point q at the higher level. A concrete problem of this type, motivated by technological, ecological and socio-economical applications, will be discussed in more detail, namely optimizing the structure of a finite population X by assuring that after a fixed time T a maximal number of its elements is characterized by nondominated values of criteria. Assuming that X consists of N elements, the solution to this problem is equivalent to solving in parallel N discrete dynamic programming problems sharing the same resources. (original abstract)
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of Poznań University of Economics and Business
Full text
  1. Bertsekas D.P.: Dynamic Programming: Deterministic and Stochastic Models. Prentice- Hall, Inc., Englewood Cliffs 1987, pp. 376.
  2. Decision Support Systems Based on Reference Sets; AGH University Scientific Publishers, Series: Monographs 1996, No. 40, p. 165.
  3. Henig M.I.: The shortest path problem with two objective functions. European J. Oper. Res. 1985, 25, pp. 281-291.
  4. Henig M.I.: The Principle of Optimality in Dynamic Programming with Returns in Partially Ordered Sets. Mathematics of Operations Research. 1985, 10, No 3, pp. 462-470.
  5. Optimal Control of a Class of Asynchronous Discrete-Event Systems. Proceedings of the 11th IFAC World Congress. Tallinn (Estonia), August 1990. Vol. 3, p. 489- 495. Pergamon Press, London 1991.
  6. Optimising the Structure of a Partitioned Population. In: J. Henry and J.-P. Yvon. System Modelling and Optimisation; Lecture Notes in Control and Information Sciences. Vol. 197, Springer-Verlag, Berlin-Heidelberg-New York 1994, pp. 771-782.
  7. Skulimowski A.M.J.: An Interactive Modification of the Decision Set to Attain a Target Point in Vector Optimisation Problems. In: Toward Interactive and Intelligent Decision Support Systems. Eds. Sawaragi Y., Inoue K., Nakayama H. Vol. 1, Lecture Notes in Economics and Mathematical Systems 1987, 285, Springer, pp.142-153.
  8. Skulimowski A.M.J., Schmid B.F.: Redundance-free description of partitioned complex systems. Mathl. Comput. Modelling. 1992, 16, No 10, pp. 71-92.
  9. Technology Transfer in Computer Science and Automatic Control (in Polish). Progress & Business Publishers, Kraków 2006.
Cited by
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu