BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Pihlak Margus (Tallinn University of Technology, Estonia)
Title
Modelling of Skewness Measure Distribution
Source
Statistics in Transition, 2014, vol. 15, nr 1, s. 145-152, bibliogr. 13 poz.
Keyword
Analiza matematyczna, Aproksymacja, Metody statystyczne, Rachunek prawdopodobieństwa
Mathematical analysis, Approximation, Statistical methods, Calculus of probability
Note
Materiały z konferencji Multivariate Statistical Analysis 2013, Łódź.
This paper is supported by Estonian Ministry of Education and Science target financed theme No. SF0140011s09.
summ.
Abstract
In this paper the distribution of random variable skewness measure is modelled. Firstly, we present some results of matrix algebra useful in multivariate statistical analyses. Then, we apply the central limit theorem on modelling of skewness measure distribution. Finally, we give an idea for finding the confidence intervals of statistical model residuals' asymmetry measure. (original abstract)
Accessibility
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of the Wroclaw University of Economics
Full text
Show
Bibliography
Show
  1. ANDERSON, T. W., (2003). An Introduction to Multivariate Statistical Analysis. Wiley Interscience.
  2. HARVILLE, A., (1997). Matrix Algebra from a  Statistician's Perspective. Springer, New York.
  3. KLAR, B., (2002). A Treatment of Multivariate Skewness, Kurtosis, and Related Statistics. Journal of Multivariate Analysis, 83, 141-165.
  4. KOLLO, T., (1991). Matrix Derivative in Multivariate Statistics. Tartu University Press, Tartu (in Russian).
  5. KOLLO, T., SRIVASTAVA, M. S., (2004). Estimation and testing of parameters in multivariate Laplace distribution. Comm. Statist., 33, 2363-2687.
  6. KOLLO, T., VON ROSEN, D., (2005). Advanced Multivariate Statistics with Matrices. Springer, Dordrecht.
  7. KOLLO, T., (2008). Multivariate skewness and kurtosis measures with an application in ICA. Journal of Multivariate Analyses, 99, 2328-2338.
  8. MacRAE, E. C., (1974). Matrix derivatives with an application to an adaptive linear decision problem. Ann. Statist., 2, 337-346.
  9. MARDIA, K. V., (1970). Measures of multivariate skewness and kurtosis measures with applications. Biometrika, 57, 519-530.
  10. MORI, T. F., ROHATGI, V. K., SZEKELY., (1993). On multivariate skewness and kurtosis. Theory Probab. Appl, 38, 547-551.
  11. NEUDECKER, H., (1969). Some theorems on matrix differentiations with special reference to Kronecker matrix products. Journal of the American Statistical Association, 64, 953-963.
  12. PARRING, A-M., (1979). Estimation asymptotic characteristic function of sample (in Russian). Acta et Commetationes Universitatis Tartuensis de Mathematica, 492, 86-90.
  13. PIHLAK, M., (2004). Matrix integral. Linear Algebra and its Applications, 388, 315- 325.
Cited by
Show
ISSN
1234-7655
Language
eng
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu