BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Wang Mengyun (Beihang University), Liu Xianglong (Beihang University), Huang Lei (Beihang University), Lang Bo (Beihang University), Yu Hailiang (Beihang University)
Title
Ontology-based Concept Similarity Integrating Image Semantic and Visual Information
Source
Annals of Computer Science and Information Systems, 2014, vol. 2, s. 289 - 296, rys., tab., bibliogr. 24 poz.
Keyword
Miara podobieństwa, Przetwarzanie obrazu, Analiza obrazu, Wizualizacja danych
Similarity measure, Image processing, Image analysis, Data visualisation
Note
summ.
Abstract
In recent years, the concept similarity measure has received wide attention in many applications, such as ontology construction, text analysis, image retrieval, etc. Currently, the concept similarity measure depends on the information mining in various knowledge bases, like dictionaries, ontologies, image annotation labels, and search engines. However, these knowledge bases usually only contain semantic information. With the development of the Internet and the popularity of the digital imaging devices, a lot of images and related texts have appeared, which help us to further mine the concept similarity relationships. The concept similarity is the outcome of human subjective perception. In addition to analysis of semantic information, the content of image itself precisely provides the visual perception information, which also plays an important role in the access of concept similarity relationships. To integrate both image semantic and visual information, in this paper we propose an ontology concept similarity measure that simultaneously utilizes the image semantic annotations and visual features to optimize the ontology-based metrics. The experiment result on the Corel dataset demonstrates the effectiveness of our proposed method.(original abstract)
Full text
Show
Bibliography
Show
  1. Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
  2. Banerjee S, Pedersen T. An adapted Lesk algorithm for word sense disambiguation using WordNet[M]. Computational linguistics and intelligent text processing. Springer Berlin Heidelberg, 2002: 136-145. DOI: http://dx.doi.org/10.1007/3-540-45715-1_11
  3. Bruni E, Boleda G, Baroni M, et al. Distributional semantics in Technicolor. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1. Association for Computational Linguistics, 2012: 136-145.
  4. Cilibrasi R L, Vitanyi P M B. The google similarity distance. Knowledge and Data Engineering, IEEE Transactions on, 2007, 19(3): 370-383. DOI: http://dx.doi.org/10.1109/TKDE.2007.48
  5. Finkelstein L, Gabrilovich E, Matias Y, et al. Placing search in context: The concept revisited. Proceedings of the 10th international conference on World Wide Web. ACM, 2001: 406-414. DOI: http://dx.doi.org/10.1145/371920.372094
  6. Hirst G, St-Onge D. Lexical chains as representations of context for the detection and correction of malapropisms. WordNet: An electronic lexical database, 1998, 305: 305-332.
  7. Jiang J J, Conrath D W. Semantic similarity based on corpus statistics and lexical taxonomy. arXiv preprint cmp-lg/9709008, 1997.
  8. Leacock C, Chodorow M. Combining local context and WordNet similarity for word sense identification. WordNet: An electronic lexical database, 1998, 49(2): 265-283.
  9. Lesk M. Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone. Proceedings of the 5th annual international conference on Systems documentation. ACM, 1986: 24-26. DOI: http://dx.doi.org/10.1145/318723.318728
  10. Lin D. An information-theoretic definition of similarity. ICML. 1998, 98: 296-304.
  11. Luong M T, Socher R, Manning C D. Better word representations with recursive neural networks for morphology. CoNLL-2013, 2013, 104.
  12. Miller G A, Charles W G. Contextual correlates of semantic similarity. Language and cognitive processes, 1991, 6(1): 1-28. DOI: http://dx.doi.org/10.1080/01690969108406936
  13. Patwardhan S, Pedersen T. Using WordNet-based context vectors to estimate the semantic relatedness of concepts. Proceedings of the EACL 2006 Workshop Making Sense of Sense-Bringing Computational Linguistics and Psycholinguistics Together. 2006, 1501: 1-8.
  14. Rada R, Mili H, Bicknell E, et al. Development and application of a metric on semantic nets. Systems, Man and Cybernetics, IEEE Transactions on, 1989, 19(1): 17-30. DOI: http://dx.doi.org/10.1109/21.24528
  15. Resnik P. Using information content to evaluate semantic similarity in a taxonomy. arXiv preprint cmp-lg/9511007, 1995.
  16. Rodríguez M A, Egenhofer M J. Determining semantic similarity among entity classes from different ontologies. Knowledge and Data Engineering, IEEE Transactions on, 2003, 15(2): 442-456.
  17. Rubenstein H, Goodenough J B. Contextual correlates of synonymy. Communications of the ACM, 1965, 8(10): 627-633. DOI: http://dx.doi.org/10.1145/365628.365657
  18. Sánchez D, Batet M, Isern D, et al. Ontology-based semantic similarity: A new feature-based approach. Expert Systems with Applications, 2012, 39(9): 7718-7728. DOI: http://dx.doi.org/10.1016/j.eswa.2012.01.082
  19. Sánchez D, Batet M. A semantic similarity method based on information content exploiting multiple ontologies. Expert Systems with Applications, 2013, 40(4): 1393-1399. DOI: http://dx.doi.org/10.1016/j.eswa.2012.08.049
  20. Studer R, Benjamins V R, Fensel D. Knowledge engineering: principles and methods. Data & knowledge engineering, 1998, 25(1): 161-197. DOI: http://dx.doi.org/10.1016/S0169-023X(97)00056-6
  21. Tversky A. Features of similarity. Psychological review, 1977, 84(4): 327. DOI: http://dx.doi.org/10.1037//0033-295X.84.4.327
  22. Wu Z, Palmer M. Verbs semantics and lexical selection. Proceedings of the 32nd annual meeting on Association for Computational Linguistics. Association for Computational Linguistics, 1994: 133-138. DOI: http://dx.doi.org/10.3115/981732.981751
  23. Xu H, Zhou X, Wang M, et al. Exploring Flickr's related tags for semantic annotation of web images. Proceedings of the ACM International Conference on Image and Video Retrieval. ACM, 2009: 46. DOI: http://dx.doi.org/10.1145/1646396.1646450
  24. Zhou Z, Wang Y, Gu J. A new model of information content for semantic similarity in WordNet. Future Generation Communication and Networking Symposia, 2008. FGCNS'08. Second International Conference on. IEEE, 2008, 3: 85-89. DOI: http://dx.doi.org/10.1109/FGCNS.2008.16
Cited by
Show
ISSN
2300-5963
Language
eng
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu