BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Drąg Paweł (Wrocław University of Technology), Styczeń Krystyna (Wrocław University of Technology)
3-D filter SQP method for optimal control of the multistage differential-algebraic systems with inconsistent initial values
Annals of Computer Science and Information Systems, 2014, vol. 2, s. 405 - 411, rys., bibliogr. 21 poz.
Algorytmy, Programowanie nieliniowe, Równania różniczkowe
Algorithms, Nonlinear programming, Differential equations
In the article a new approach for solving complex and highly nonlinear differential-algebraic equations (DAEs) was presented. An important kind of applications of DAE systems is modeling of biotechnological processes, which can have a very different course. An efficient solving of equations describing biotechnological industrial inlets results in better optimization of the processes and has a positive impact on the environment. Some of the mentioned processes were characterized by a highly nonlinear dynamics. To obtain the trajectories of the state numerically, the backward differentiation formula was used in the presented method. As a result, a large-scale system of nonlinear algebraic equations was obtained. To solve a such system, the inexact Newton matrix-free approach was proposed. The new algorithm was tested on a mathematical model of a fed-batch fermentor for penicillin production. The numerical simulations were executed in MATLAB using Wroclaw Center for Networking and Supercomputing.(original abstract)
Full text
  1. Audet C., Dennis Jr J. E.. 2004. A pattern search filter method for nonlinear programming without derivatives. SIAM Journal on Optimization. 14:980-1010,
  2. Banga J. R., Balsa-Canto E., Moles C. G., Alonso A. A.. 2005. Dynamic optimization of bioprocesses: Efficient and robust numerical strategies. Journal of Biotechnology. 117:407-419,
  3. Betts J. T.. 2010. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Second Edition. SIAM, Philadelphia,
  4. Biegler L. T.. 2010. Nonlinear Programming. Concepts, Algorithms and Applications to Chemical Processes. SIAM, Philadelphia,
  5. Bielger L. T., Campbell S., Mehrmann V.. 2012. DAEs, Control, and Optimization. Control and Optimization with Differential-Algebraic Constraints. SIAM, Philadelphia,
  6. Brenan K. E., Campbell S. L., Petzold L. R.. 1996. Numerical Solution of Initial- Value Problems in Differential-Algebraic Equations. SIAM, Philadelphia,
  7. Diehl M., Bock H. G., Schloder J. P., Findeisen R., Nagy Z., Allgower F.. 2002. Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. Journal of Process Control. 12:577-585,
  8. Drąg P., Styczeń K.. 2012. A Two-Step Approach for Optimal Control of Kinetic Batch Reactor with electroneutrality condition. Przegląd Elektrotechniczny. 6:176-180.
  9. Fletcher R., Gould N. I. M., Leyffer S., Toint P. L., Watcher A. 2002. Global convergence of a trust region SQP-filter algorithms for general nonlinear programming. SIAM Journal on Optimization. 13:635-659,
  10. Fletcher R., Leyffer S. 2002. Nonlinear programming without a penalty function. Mathematical Programming. 91:239-269,
  11. Fletcher R., Leyffer S., Toint P. L. 2002. On the global convergence of a Filter-SQP algorithm. SIAM Journal on Optimization. 13:44-59,
  12. Gould N. I. M., Leyffer S., Toint P. L. 2004. A multidimensional filter algorithm for nonlinear equations and nonlinear least squares. SIAM Journal on Optimization. 15:17-38,
  13. Gould N. I. M., Sainvitu C., Toint P .L. 2005. A filter trust region method for unconstrained optimization. SIAM Journal on Optimization. 16:341-357,
  14. Kwiatkowska M. 2012. Antimicrobial PVC composites. Processing technologies and functional properties of polymer nanomaterials for food packaging : International COST Workshop, Wroclaw, Poland, September 11-12, 2012, pp. 40-41.
  15. Nocedal J, Wright S. J. 2006. Numerical Optimization. Second Edition. Springer, New York,
  16. Rafajłowicz E., Styczeń K., Rafajłowicz W. 2012. A modified filter SQP method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics. Int. J. Appl. Math. Comput. Sci. 22:313-326,
  17. Shen C., Xue W., Pu D. 2009. Global convergence of a tri-dimensional filter SQP algorithm based on the line search method. Applied Numerical Mathematics. '59:235-250,
  18. Ulbrich M., Ulbrich S., Vicente L. N.. 2004. A globally convergent primal-dual interior filter method for nonconvex nonlinear programming. Mathematical Programming. 100:379-410,
  19. Vassiliadis V. S., Sargent R. W. H., Pantelides C. C. 1994. Solution of a Class of Multistage Dynamic Optimization Problems. 1. Problems without Path Constraints. Ind. Eng. Chem. Res. 33:2111-2122,
  20. Watcher A., Biegler L. T. 2005. Line search filter methods for nonlinear programming: Motivation and global convergence. SIAM Journal on Optimization. 16: 1-31,
  21. Watcher A., Biegler L. T. 2005. Line search filter methods for nonlinear programming: Local convergence. SIAM Journal on Optimization. 16:32-48,
Cited by
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu