BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Szopa Marek (University of Silesia in Katowice, Sosnowiec, Poland)
Title
How Quantum Prisoner's Dilemma Can Support Negotiations
Source
Optimum : studia ekonomiczne, 2014, nr 5 (71), s. 90-102, rys., tab., bibliogr. s. 101-102
Keyword
Decyzje optymalne, Negocjacje, Teoria gier, Zastosowanie teorii gier
Optimal decisions, Negotiations, Game theory, Application of game theory
Note
This work was partially supported by the grant from Polish National Science Center DEC-2011/03/B/HS4/03857.
summ.
Abstract
Decision-making by the two negotiating parties is simulated by a prisoned s dilemma game. The game is formulated in a quantum manner, where players strategies are unitary transformations of qubits built over the basis of opposite decision options. Quantum strategies are correlated through the mechanism of quantum entanglement and the result of the game is obtained by the collapse of the resulting transformed state. The range of strategies allowed for quantum players is richer than in case of a classical game and therefore the result of the game can be better optimized. On the other hand, the quantum game is save against eavesdropping and the players can be assured that this type of quantum arbitration is fair. We show that quantum prisoner's dilemma has more favorable Nash equilibria than its classical analog and they are close to the Pareto optimal solutions. Some economical examples of utilizing quantum game Nash equilibria are proposed. (original abstract)
Accessibility
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
Full text
Show
Bibliography
Show
  1. Albrecht A., Phillips D. 2012, Origin of Probabilities and their Application to the Multiverse, Cornell University Library, Retrieved from http://arxiv.org/pdf/1212.0953v1.pdf.
  2. Aronson E., Wilson T., Akert R. 1994 Social Psychology, HarperCollins College Publishers.
  3. Busemeyer J.R., Wang Z., Townsend J.T. 2006 Quantum Dynamics of Human Decision-Making, "Journal of Mathematical Psychology", 50(220-241).
  4. Chen K., Hogg T. 2006 How Well Do People Play a Quantum Prisoner's Dilemma, "Quantum Information Processing", 5(1)(43-67).
  5. Dixit A.K., Nalebuff B.J. 2008 The Art of Strategy: a Game Theorist's Guide to Success in Business & Life, W. W. Norton & Company, Inc., New York.
  6. Du J., Li H., Xu X., Shi M., Wu J., Han R. 2002 Experimental Realisation of Quantum Games on Quantum Computer, "Physical Review Letters", 88(137902).
  7. Eisert J., Wilkens M., Lewenstein M. 1999 Quantum Games and Quantum Strategies, "Physical Review Letters", 83(3077), p. 3077.
  8. Flitney A., Abbott D. 2002 An Introduction to Quantum Game Theory, "Fluct. Noise Lett.", 2(R175-87).
  9. Flood M.M., Dresher M. 1952 Research Memorandum, [in:] RM- 789-1-PR, RAND Corporation, Santa-Monica, Ca.
  10. Goldenberg L., Vaidman L., Wiesner S. 1999 Quantum Gambling, "Physical Review Letters", 82(3356).
  11. Hamilton W.D., Axelrod R. 1981 The Evolution of Cooperation, "Science", 211.27(1390-1396).
  12. Haroche S. 2012 The Secrets of my Prizewinning Research, "Nature", 490(311).
  13. Miakisz K., Piotrowski E., Sładkowski J. 2006 Quantization of Games: Towards Quantum Artificial Intelligence, "Theoretical Computer Science", 358(15-22).
  14. Perrotin R., Heusschen P. 1993 Acheter avec profit, Les Editions d'Organisation, Paris.
  15. Piotrowski E., Sładkowski J. 2002 Quantum Market Games, "Physica A", 312(208-216).
  16. Piotrowski E., Sładkowski J. 2008 Quantum Auctions: Facts and Myths, "Physica A", 387(3949-3953).
  17. Pothos E.M., Busemeyer J.R. 2009 A Quantum Probability Explanation for Violations of "Rational" Decision Theory, "Proceedings of the Royal Society B", 276(2171-2178).
  18. Rapoport A., Chammah, A. 1970 Prisoner's Dilemma, University of Michigan Press.
  19. Szopa M. 2014 Dlaczego w dylemat więźnia warto grać kwantowo, "Modelowanie Preferencji a Ryzyko '14 (pp. 174-189, Studia Ekonomiczne Uniwersytetu Ekonomicznego, Katowice.
  20. van der Sar T., Wang Z., Blok M., Bernien H., Taminiau, T., Toyli, D., Dibrovitski V. 2012 Decoherence-Protected Quantum Gates fora Hybrid Solid-State Spin Register, "Nature", 484(82-86).
  21. Vandersypen L.M., Steffen M., Breyta G., Yannoni C.S., Sherwood M.H. 2001 Experimental Realization of Shor's Quantum Factoring Algorithm Using Nuclear Magnetic Resonance, "Nature", 414(883-887).
Cited by
Show
ISSN
1506-7637
Language
eng
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu