BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Ekes Maria (Szkoła Główna Handlowa w Warszawie)
Title
Application of Generalized Owen Value for Voting Games in Partition Function Form
Zastosowanie uogólnionej wartości Owena w grach prostych w postaci funkcji rozbicia
Source
Roczniki Kolegium Analiz Ekonomicznych / Szkoła Główna Handlowa, 2013, nr 32, s. 43-53, rys., wykr., tab., bibliogr. 23 poz.
Issue title
Mechanism design and related topics
Keyword
Gry kooperacyjne, Modele wyboru, Decyzje wyborcze, Zastosowanie teorii gier
Cooperative game, Models of choice, Voting decisions, Application of game theory
Note
streszcz., summ.
Abstract
Artykuł jest poswiecony zastosowaniu uogólnionej wartosci Owena, zdefiniowanej we wczesniejszych badaniach dla gier w postaci funkcji rozbicia. Proponujemy zastosowanie tej wartosci w grach prostych w postaci funkcji rozbicia, modelujacych głosowania, w których wybiera sie jedna z wielu opcji lub jednego z wielu kandydatów. Przedstawiamy takze przykład zastosowania tej wartosci do mierzenia siły głosu posłów w Sejmie RP. (abstrakt oryginalny)

In the paper we present an application of the generalized Owen value, defined in our former work, for partition function form games. We apply this value to simple games, modeling multicandidate or multioptional voting. We also present an example of application of this concept to measuring the voting power of deputies in the Polish Sejm.
Accessibility
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of Poznań University of Economics and Business
The Main Library of the Wroclaw University of Economics
Bibliography
Show
  1. Bolger E.M. (1983), The Banzhaf index for multicandidate presidential elections, "SIAM Journal on Algebraic and Discrete Methods" 4.
  2. Bolger E.M. (1986), Power indices for multicandidate voting games, "International Journal of Game Theory" 15.
  3. Bolger E.M. (1989), A set of axioms for a value for partition function games, "International Journal of Game Theory" 18.
  4. Bolger E.M. (1993), A value for games with n players and r alternatives, "International Journal of Game Theory" 22.
  5. Bolger E.M. (2000), A consistent value for games with n players and r alternatives, "International Journal of Game Theory" 29.
  6. Bolger E.M. (2002), Characterization of two power indices for voting games with r alternatives, "Social Choice and Welfare" 19.
  7. Casajus A. (2009), The Shapley value, the Owen value, and the veil of ignorance, "International Game Theory Review" 11.
  8. Chun Y. (1989), A new axiomatization of the Shapley value, "Games and Economic Behavior" 1.
  9. De Clippel G. (2008), Serrano R., Marginal contributions and externalities in the value, Econometrica 76.
  10. Dubey P. (1975), On the uniqueness of the Shapley value, "International Journal of Game Theory" 4.
  11. Ekes M. (2010), A generalization of the Owen value for games in partition function form, badania statutowe SGH.
  12. Felsenthal D.S. (1998), Machover M., The measurement of voting power. Theory and practice, problems and paradoxes, Edward Elgar Publishing.
  13. Hart S., Kurz M. (1983), On the endogenous formation of coalitions, "Econometrica", 51.
  14. Hart S., Mas-Colell A. (1989), Potential, value and consistency, "Econometrica" 57.
  15. Myerson R.B. (1977), Value of games in partition function form, "International Journal of Game Theory" 6.
  16. Owen G. (1977), Values of games with a priori unions, in Lecture Notes in Economics and Mathematical Systems. Essays in Honour of Oskar Morgenstern, ed.. R. Henn and O. Moschlin, Springer-Verlag, New York.
  17. Macho-Stadler I., Perez-Castrillo D., Wettstein D. (2007), Sharing the surplus: an extension of the Shapley value for environments with externalities, JET 135.
  18. Pham Do K.H., Norde H. (2007), The Shapley value for partition function form games, "International Game Theory Review" 9.
  19. Shapley L.S. 1953, A value for n-person games, in Contributions to the Theory of Games II (Annals of Mathematics Studies 28), ed. H. W. Kuhn, A. W. Tucker, Princeton University Press.
  20. Thrall R.M., Lucas W.F. (1963), n-Person games in partition function form, "Naval Research Logistics Quarterly" 10.
  21. Winnicka J. (2010), Indeks Shapleya dla gier z wieloma rozstrzygnieciami z prekoalicjami, "Roczniki Kolegium Analiz Ekonomicznych" 22.
  22. Young H.P. (1985), Monotonic solutions of cooperative games, "International Journal of Game Theory" 14.
  23. Regulamin Sejmu Rzeczypospolitej Polskiej, www.sejm.gov.pl, retrieved June 2013.
Cited by
Show
ISSN
1232-4671
Language
eng
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu