BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Próchniak Mariusz (Warsaw School of Economics, Poland), Witkowski Bartosz (Warsaw School of Economics, Poland)
The legendary 2% convergence parameter: flexible or fixed?
Roczniki Kolegium Analiz Ekonomicznych / Szkoła Główna Handlowa, 2014, nr 34, s. 227-243, rys., tab., bibliogr. 27 poz.
Issue title
Modelowanie danych panelowych : teoria i praktyka : III Ogólnopolska Konferencja
Modele regresji, Regresja liniowa, Metody ekonometryczne, Badania empiryczne
Regression models, Linear regression, Econometric methodology, Empirical researches
The study analyzes the time stability of the beta convergence coefficient for the EU28 countries over the 1992-2012 period which is divided into seventeen 5-year overlapping subperiods. The basic convergence model is estimated with the use of GMM system estimator and a variety of control variables which are typical growth factors. It turns out that the average value of β-coefficient is 6.10% which indicates quite a rapid pace of convergence. However, it is not appropriate to claim about a constant rate of convergence over time among the EU countries as β-parameter was changing over time. After some trough in the second half of the 1990s, it was observed a gradual acceleration of the pace of the catching-up process in the 2000s and 2010s.(original abstract)
The Library of Warsaw School of Economics
The Main Library of Poznań University of Economics and Business
  1. Abreu M., de Groot H., Florax R., A Meta-Analysis of β-Convergence: The Legendary 2 %, "Journal of Economic Surveys" 2005, vol. 19, pp. 389-420.
  2. Acemoglu D., Johnson S., Robinson J.A., The Colonial Origins of Comparative Development: An Empirical Investigation, "American Economic Review" 2001, vol. 91, pp. 1369-1401.
  3. Andreano M.S., Laureti L., Postiglione P., Economic Growth in MENA Countries: Is There Convergence of Per-Capita GDPs?, "Journal of Policy Modeling" 2013, vol. 35, pp. 669-683.
  4. Arellano M., Bond S., Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations, "Review of Economic Studies" 1991, vol. 58, pp. 277-297.
  5. Barro R.J., Sala-i-Martin X., Economic Growth, The MIT Press, Cambridge- London 2003.
  6. Bartkowska M., Riedl A., Regional Convergence Clubs in Europe: Identification and Conditioning Factors, "Economic Modelling" 2012, vol. 29, pp. 22-31.
  7. Battisti M., Parmeter Ch.F., Clustering and Polarization in the Distribution of Output: A Multivariate Perspective, "Journal of Macroeconomics" 2013, vol. 35, pp. 144-162.
  8. Bayraktar-Sağlam B., Yetkiner H., A Romerian Contribution to the Empirics of Economic Growth, "Journal of Policy Modeling" 2014, vol. 36, pp. 257-272.
  9. Bernardelli M., Metoda szybkiej aktualizacji dekompozycji QR dla modeli liniowej regresji, "Roczniki" Kolegium Analiz Ekonomicznych SGH, z. 27, Oficyna Wydawnicza SGH, Warszawa 2012, pp. 55-68.
  10. Blundell R., Bond S., Initial Conditions and Moment Restrictions in Dynamic Panel Data Models, "Journal of Econometrics" 1998, vol. 87, pp. 115-143.
  11. Crespo Cuaresma J., Havettová M., Lábaj M., Income Convergence Prospects in Europe: Assessing the Role of Human Capital Dynamics, "Economic Systems" 2013, vol. 37, pp. 493-507.
  12. De La Fuente A., Convergence Equations and Income Dynamics: The Sources of OECD Convergence, 1970-1995, "Economica" 2003, vol. 70, pp. 655-671.
  13. Di Liberto A., Symons J., Some Econometric Issues in Convergence Regressions, "The Manchester School" 2003, vol. 71, pp. 293-307.
  14. Feenstra R.C., Inklaar R., Timmer M.P., The Next Generation of the Penn World Table, 2013,
  15. Fraser Institute, Economic Freedom of the World, 2014, www.freetheworld. com.
  16. . Freedom House, Freedom in the World, 2014,
  17. Ghosh M., Ghoshray A., Malki I., Regional Divergence and Club Convergence in India, "Economic Modelling" 2013, vol. 30, pp. 733-742.
  18. Goczek Ł., Przegląd i ocena ekonometrycznych metod używanych w modelach empirycznych wzrostu gospodarczego, "Gospodarka Narodowa" 2012, t. 10, pp. 49-73.
  19. Herrerias M.J., Ordoñez J., New Evidence on the Role of Regional Clusters and Convergence in China (1952-2008), "China Economic Review" 2012, vol. 23, pp. 1120-1133.
  20. IMF, World Economic Outlook Database October 2013, updated: January 2014,
  21. Matkowski Z., Próchniak M., Rapacki R., Nowe i stare kraje Unii Europejskiej: konwergencja czy dywergencja?, "Prace i Materiały" Instytutu Rozwoju Gospodarczego SGH 2013, z. 91, pp. 63-98.
  22. Monfort M., Cuestas J.C., Ordóñez J., Real Convergence in Europe: A Cluster Analysis, "Economic Modelling" 2013, vol. 33, pp. 689-694.
  23. Próchniak M., Witkowski B., Real β Convergence of Transition Countries. Robust Approach, "Eastern European Economics" 2013, vol. 51, pp. 6-26.
  24. Próchniak M., Witkowski B., The Analysis of the Impact of Regulatory Environment on the Pace of Economic Growth of the World Countries According to the Bayesian Model Averaging, National Bank of Poland Working Paper no. 165, Warsaw 2013.
  25. Serranito F., Heterogeneous Technology and the Technological Catching-up Hypothesis: Theory and Assessment in the Case of MENA Countries, "Economic Modelling" 2013, vol. 30, pp. 685-697.
  26. Sum K., The Integration of the Financial Markets and Growth Evidence from a Global Cross-Country Analysis, "Bank i Kredyt" 2012, nr 43, pp. 47-70.
  27. World Bank, World Development Indicators, 2014,
Cited by
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu