BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Ejsmont Wiktor (Uniwersytet Ekonomiczny we Wrocławiu), Łyko Natalia (Uniwersytet Ekonomiczny we Wrocławiu)
Title
Spatial Analysis of Learning Results in High School Mathematics and Polish by County
Source
Didactics of Mathematics, 2013, nr 10(14), s. 19-32, bibliogr. 17 poz.
Keyword
Edukacja ekonomiczna, Taksonomia, Nauczanie, Wyższe szkoły ekonomiczne, Matematyka
Economic education, Taxonomy, Teaching, Higher economic schools, Mathematics
Note
summ.
Abstract
One way to assess the quality of the educational activities of schools is to analyze the educational value-added, with the help of which it is possible to measure the gain in students‟ knowledge that takes place at various stages of education. This is an objective measurement that takes into account the knowledge with which the student begins the next stage of learning. Access to data on the final results of tests at every stage of education enables the assessment of the quality of education in schools throughout Poland. The article aims to analyze these results and attempts to show the spatial dependence of the results obtained.(original abstract)
Accessibility
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of the Wroclaw University of Economics
Full text
Show
Bibliography
Show
  1. Aitkin M., Longford N. (1986). Statistical Modelling Issues in School Effectiveness Studies. Journal of the Royal Statistical Society. Vol. 149. No. 1. Pp. 1-43.
  2. Baltagi B.H. (2005). Econometric Analysis of Panel Data. John Wiley & Sons.
  3. Bils M., Klenow P. (2000). Does Schooling Cause Growth? American Economic Review. Vol. 90. No 5. Pp. 1160-1183.
  4. Chabbott C., Ramirez F. (2006). Development and Education. Handbook of the Sociology of Education. Part II. Pp. 163-187.
  5. Ejsmont W. (2009). Efektywność nauczania we wrocławskich liceach. Didactics of Mathematics. No 5-6 (9-10). Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu. Pp. 111-128.
  6. Hellwig Z. (1968). Zastosowanie metody taksonomicznej do typologicznego podziału krajów ze względu na poziom rozwoju i strukturę kwalifikowanych kadr. Przegląd Statystyczny. No 4. Pp. 307-328.
  7. Jakubowski J., Sztencel R. (2004). Wstęp do teorii prawdopodobieństwa. SCRIPT.
  8. Maddala G.S. (2006). Ekonometria. PWN. Warszawa.
  9. Mankiw N.G., Romer D., Weil D. (1992). A Contribution to the Empirics of Economic Growth. Quarterly Journal of Economics. No 107. Pp. 401-437.
  10. Nowak E. (1990). Metody taksonomiczne w klasyfikacji obiektów społeczno-gospodarczych. PWE. Warszawa.
  11. Rosner A. (1999). Typologia wiejskich obszarów problemowych. IRWiR PAN. Warszawa.
  12. Rosner A. (2002). Wiejskie obszary kumulacji barier rozwojowych. IRWiR PAN. Warszawa.
  13. Rosner A. (2007). Zróżnicowanie poziomu rozwoju społeczno-gospodarczego obszarów wiejskich zróżnicowanie dynamiki przemian. IRWiR PAN. Warszawa.
  14. Skrondal A., Rabe-Hesketh S. (2008). Multilevel and Longitudinal Modeling Using Stata. College Station. Texas: Stata Press Publication - StataCorp LP.
  15. Temple J. (2001). Growth Effects of Education and Social Capital in the OECD Countries.
  16. OECD Economic Studies. No 33. Pp. 57-101.Wansbeek T.J., Kapteyn A. (1982). A Class of Decompositions of the Variance-Covariance Matrix of a Generalized Error Components Model. Econometrica. No 50. Pp. 713-724.
  17. Wansbeek T.J., Kapteyn A. (1982). A Simple Way to Obtain the Spectral Decomposition of Variance Components Models for Balanced Data. Communications in Statistics. No 11. Pp. 2105-2112.
Cited by
Show
ISSN
1733-7941
Language
eng
URI / DOI
http://dx.doi.org/10.15611/dm.2013.10.02
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu