BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Eideh Abdulhakeem A. H. (Palestine Polytechnic University)
Title
Fitting General Linear Model for Longitudinal Survey Data Under Informative Sampling
Source
Statistics in Transition, 2010, vol. 11, nr 3, s. 517-538, bibliogr. s. 537-538
Keyword
Statystyka matematyczna, Estymatory, Rachunek prawdopodobieństwa
Mathematical statistics, Estimators, Calculus of probability
Note
summ.
Abstract
The purpose of this article is to account for informative sampling in fitting superpopulation model for multivariate observations, and in particular multivariate normal distribution, for longitudinal survey data. The idea behind the proposed approach is to extract the model holding for the sample data as a function of the model in the population and the first order inclusion probabilities, and then fit the sample model using maximum likelihood, pseudo maximum likelihood and estimating equations methods. As an application of the results, we fit the general linear model for longitudinal survey data under informative sampling using different covariance structures: the exponential correlation model, the uniform correlation model, and the random effect model, and using different conditional expectations of first order inclusion probabilities given the study variable. The main feature of the present estimators is their behaviours in terms of the informativeness parameters. (original abstract)
Accessibility
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of Poznań University of Economics and Business
The Main Library of the Wroclaw University of Economics
Full text
Show
Bibliography
Show
  1. BIRNBAUM ZW., PAULSON E., and ANDREWS F.C. (1950). On the Effect of Selection Performed on Some Coordinates of a Multi-Dimensional Population. Psychometrika, 15, pp 191-204.
  2. CHAMBERS, R. and SKINNER, C. (2003). Analysis of Surveу Data. New York: John Wiley.
  3. DIGGLE, P. J., LIANG, K. Y, and ZEGER, S. L. (1994). Analysis of Longitudinal Data. Oxford: Science Publication.
  4. EIDEH A H. (2008). Estimation and Prediction of Random Effects Models for Longitudinal Survey Data under Informative Sampling. Statistics in Transition - New Series .Volume 9, Number 3, December 2008, pp 485502.
  5. EIDEH, A. H. and NATHAN, G. (2009). Two-Stage Informative Cluster Sampling with application in Small Area Estimation. Journal of Statistical Planning andInference.139, pp 3088-3101.
  6. EIDEH, A. H. and NATHAN, G. (2006) Fitting Time Series Models for Longitudinal Survey Data under Informative Sampling. Journal of Statistical Planning and Inference, 136, 3052-3069.
  7. FAHRMEIR, L. and TUTZ, G. (2001). Multivariate statistical modeling based on generalized linear models, 2nd edn. New York: Springer.
  8. HERRIOT, R.A., and KASPRZYK, D. (1984). The survey of income and program participation. American Statistical Association, Proceedings of the Social Statistics Section, pp.107-116.
  9. HOEM, J.M. (1989). The issue of weights in panel surveys of individual behaviors. In Panel Surveys, (Eds.), Kasprzyk, D., Duncan, G.J., Kalton, G., and Singh, M.P., New York: Wiley, pp. 539- 565.
  10. LOHNSON, R.A., and WICHERN, D.W. (1998). Applied Multivariate Statistical Analysis, 4th edn. New Jersey: Prentice Hall.
  11. KASPRZYK, D., DUNCAN, G.J, KALTON, G., and SINGH, MP. (Eds.) (1989). Panel Surveys. New York: Wiley.
  12. KRIEGER, A.M, and PFEFFERMANN, D. (1997) Testing of distribution functions from complex sample surveys. Journal of Official Statistics. 13: 123-142.
  13. MARDIA, K.V., KENT, T.J. and BIBBY, J.M. (1979). Multivariate analysis, New York: Academic Press.
  14. NATHAN, G. (1999). A review of sample attrition and representativeness in three longitudinal surveys. GSS methodology Series No. 13. London: Office of National Statistics.
  15. NATHAN, G. and EIDEH, A. H. (2004). L'analyse des donnees issues des enquetes longitudinales sous un plan de sondage informatif. in: Echantillonage et Methodes d'Enquetes. (P. Ardilly - Ed.) Paris: Dunod, pp 227-240.
  16. PFEFFERMANN, D. (1993). The role of sampling weight when modeling survey data. International Statistical Review 61: 317-337.
  17. PFEFFERMANN, D. (1996). The use of sampling weights for survey data analysis. Statistical Methods in Medical Research, V.5: 239 -261.
  18. PFEFFERMANN, D., KRIEGER, A. M, and RINOTT, Y. (1998). Parametric Distributions of Complex Survey Data under Informative Probability Sampling. Statistica Sinica, 8, 1087 1114.
  19. PFEFFERMANN, D. and SVERCHKOV, M. (1999). Parametric and Semi-Parametric Estimation of Regression Models Fitted to Survey Data. Sankhya, 61, Ser. B, 66- 186.
  20. PFEFFERMANN, D. and SVERCHKOV, M. (2003). Fitting Generalized Linear Models under Informative Probability Sampling. Analysis of Survey Data. (eds. R. Chambers and C. J. Skinner), pp. 175-195. New York: Wiley.
  21. SKINNER, C.J., HOLT, D., and SMITH, T.M.F (Eds.) (1989). Analysis of Complex Surveys, New York: Wiley.
  22. SKINNER, C.J., and HOLMES, D. (2003). Random Effects Models for Longitudinal Data. Analysis of Survey Data. (eds. R. Chambers and C. Skinner), pp. 175-195. New York: Wiley.
  23. SMITH, T.M.F. and HOLMES, D.J. (1989). Multivariate analysis. In Analysis of Complex Surveys, eds. C.J. Skinner, D. Holt and T.M.F. Smith, New York: Wiley, pp. 165-190.
Cited by
Show
ISSN
1234-7655
Language
eng
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu