BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Kordos Jan (Warsaw School of Economics, Poland), Zięba-Pietrzak Agnieszka (Warsaw School of Economics, Poland)
Title
Development of Standard Error Estimation Methods in Complex Household Sample Surveys in Poland
Source
Statistics in Transition, 2010, vol. 11, nr 2, s. 231-252, bibliogr. s. 248-252
Keyword
Gospodarstwa domowe, Metody samowsporne, Estymacja, Metody statystyczne, Badania reprezentacyjne
Households, Bootstrap, Estimation, Statistical methods, Sampling survey
Note
summ.
Abstract
The authors begin with a general description of estimation methods of standard error and confidence interval from complex household sample surveys in Poland. The following estimation methods have been applied in resent years: (i) the interpenetrating sub-samples, (ii) the Taylor series linearization, (iii) the jackknife, (iv) the balanced repeated replication, and (v) the bootstrap methods. A short development of each method is presented and its application in the Polish household sample surveys described. At the end some concluding remarks are given. (original abstract)
Accessibility
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of Poznań University of Economics and Business
The Main Library of the Wroclaw University of Economics
Full text
Show
Bibliography
Show
  1. BICKEL, P.J., and FREEDMANN, D A. (1984). Asymptotic normality and the bootstrap in stratified sampling. Ann. Statist., 12, pp. 470-482.
  2. BINDER, D.A., KOVACEVIC, M.S., and ROBERTS, G. (2004). Design-based methods for survey data: Alternative uses of estimating functions. Proceedings of the Joint Statistical Meetings, Section on Survey Research Methods. 3301-3312
  3. BRICK, M.J., MORGANSTEIN, D., VALLIANT, R. (2000), Analysis of Complex Sample Data Using Replication. WESTAT, 1-10.
  4. CHAN, M.T., and LO, S.H. (1985). A bootstrap method for final populations.. Sankhya. A, 47, 399-405.
  5. EFRON, B., (1979) Bootstrap methods: another look at the jackknife, Annals of Statistics 7, 1-26
  6. EUROSTAT, (2009) Methodological studies and quality assessment of EU-SILC, Report SILC.04 15 April 2009, SAS programs for variance estimation of the measures required for Intermediate Quality Report
  7. FAUCHER D., LANGLET E. R., LESAGE E., (2003), An application of the bootstrap variance estimation method to the participation and activity limitation survey, Assemblee annuelle de la SSC, Recueil de la Section des methodes d'enquete.
  8. FAY, R.E. (1989). Theory and Application of Replicate Weighting for Variance Calculations. Proceedings of the Section on Survey Research Methods, American Statistical Association, pp. 212-217.
  9. GROSS, S. (1980). Median estimation in sample surveys. Proceedings of the Section on Survey Research Methods of the American Statistical Association., pp.181-184.
  10. GUPTA, V.K., and NIGAM, A.K. (1987). Mixed arthogonal arrays for variance estimation with unequal numbers of primary selections per stratum. Biometrika, 74, 735-742.
  11. GURNEY, M. nad JEWETT, R.S. (1975). Constructing orthogonal replications for standard errors. J. Amer .Statist. Assoc.70, 819-821.
  12. GUS (1986), Methods and Organisation of Household Budget Survey. Methodological Publication, No. 62, Warszawa (in Polish)..
  13. GUS (2009), Incomes and Living Conditions of the Population in Poland (report from the EU-SILC survey of 2007 and 2008), Statistical Information and Elaborations, Warsaw.
  14. GUS (2010a), Household Budget Surveys in 2009, Statistical Information and Elaborations, Warsaw.
  15. GUS (2010b), Labour Force Survey in Poland - I Quarter 2010), Statistical Information and Elaborations, Warsaw..
  16. KISH L., (1965) Survey Sampling, New York, Wiley
  17. KISH L., FRANKEL M. R., (1974) Inference from Complex Samples, "Journal of the Royal Statistical Society", Series B. (Methodological), Vol. 36, No. 1. 137
  18. KORDOS, J. (1985), Towards an Integrated System of Household Surveys in Poland, Bulletin of the International Statistical Institute, Vol. 51, Amsterdam, Book 2 , pp. 13-18.
  19. KORDOS, J. (1996), Forty Years of the Household Budget Surveys in Poland. Statistics in Transition, Vol. 2, No. 7, pp.1119- 1138.
  20. KORDOS, J. (2001), Some Data Quality Issues in Statistical Publications in Poland, Statistics in Transition, vol. 5, No. 3, December 2001, pp. 475-488.
  21. KORDOS ,J., LEDNICKI, B. and ZYRA, M.(2002), The Household Sample Surveys in Poland, Statistics in Transition, Vol. 5, No.4, pp. 555-589.
  22. KORDOS ,J., SZARKOWSKI, A. (1974), Method of Precision Estimation for Basic Parameters in Household Budget Surveys .Wiadomości Statystyczne, 1974, nr 5. (in Polish).
  23. KOVAR, J.G., RAO, J.N.K., and WU, C.F.J. (1988). Bootstrap and other methods to measure errors in survey estimates. Canadian Journal of Statistics, 16, 25-46.
  24. LEDNICKI, B. (1982), Sampling Design and Estimation Method in Household Budget Rotation Survey. Wiadomosci Statystyczne, No. 9. (in Polish).
  25. LEDNICKI, B. (2011), Application of the balanced repeated replication method in Polish Household Budget Survey. In: Methods and Organisation of Household Budget Survey. Methodological Publication, Warszawa (in Polish) (in preparation).
  26. LOHR, S. (1999), Sampling: Design and Analysis, Duxbury Press.
  27. MAHALANOBIS, P.C.(1946), Recent experience in statistical sampling in the Indian Statistical Institute, JRSS(A), 108, 326-378.
  28. MCCARTHY P. J., SNOWDEN C. B., (1985), The Bootstrap and Finite Population Sampling, Vital and Health Statistics, Series 2, no. 95, Public Health Service Publication 85-1369, U.S. Government Printing Office, Washington DC
  29. NIEMIRO W., WIECZORKOWSKI R., (2005) Approximating Variance for Measures of Income Inequality: An Approach Based on the Theory of M-Estimators and U-Statistics, Eurostat, 2005
  30. OSIER G., (2006) Variance estimation: the linearization approach applied by Eurostat to the 2004 SILC operation, Technical report, Eurostat and Statistics Finland Methodological Workshop on EU-SILC, Helsinki, 7-8 November 2006 (http://www.stat.fi/eusilc/workshop_en.html)
  31. QUENOUILLE, M. H. (1949). Problems in plane sampling. Annals of Mathematical Statistics 20, 255-375.
  32. POPIŃSKI W., (2006), Development of the Polish Labour Force Survey, Statistics in Transition, Vol. 7, No. 5, pp.. 1009-1030.
  33. RAO, J.N.K., and WU, C.F.J., (1988). Resampling Inferences with complex survey data. JASA, 83, 321-241.
  34. RAO, J.N.K., and WU, C.F.J., and YUE, K. (1992). Some recent work on resampling methods for complex surveys. Survey Methodology, 18, 209-217.
  35. RAO, J.N.K., and SHAO, J. (1992). Jackknife variance estimation with survey data under hot deck imputation. Biometrika, 79, 811-822.
  36. RAO, J.N.K. and SHAO, J. (1996) On Balanced Half-Sample Variance Estimation in Stratified Random Sampling. Journal of the American Statistical Association, 91, pp. 343 -348.
  37. RAO, J.N.K. and SHAO, J. (1999). Modified Balanced Repeated Replication for Complex Survey Data. Biometrika, 86, pp. 403-415.
  38. SÄRNDAL, C.E., SWENSSON, B., WRETMAN, J.H., (1992) Model Assisted Survey Sampling, New York: Springer-Verlag.
  39. SHAO J., (2003), Impact of the Bootstrap on Sample Surveys, "Statististical Science" Vol. 18, No 2, 191-198.
  40. SHAO J. and TU, D., (1996) The Jackknife and Bootstrap, Springer-Verlag, New York.
  41. SHAO, J. and WU, C. F.(1989). A general theory for jackknife variance estimation. Ann. Statist., 15,1563-1579.
  42. SITTER R. R., (1992) Comparing Three Bootstrap Methods for Survey Data, The Canadian Journal of Statistics, Vol. 20, No. 2, 135-154.
  43. SITTER R. R., (1993). Balanced repeated replications based on orthogonal multi-arrays. Biometrika, 80, 211-221.
  44. SOME, R. K. (1996), Practical Sampling Techniques, Marcel Dekker, Inc., New York.
  45. SUKHATME, P.V. and SUKHATME, B.V. (1970), Sampling Theory of Surveys with Applications, FAO, Rome.
  46. SZARKOWSKI, A., WITKOWSKI, J. (1994), The Polish Labour Force Survey, Statistics in Transition, Vol. 1, No. 4, pp. 467-483.
  47. TIBSHIRANI, R., (1985) How many bootstraps?, Technical report no 362, Department of Statistics, Stanford University
  48. TUKEY, J.W.(1958). Bias and confidence in not-quite large samples. . Annals of Mathematical Statistics. 29:614.
  49. VERMA V. (1993). Sampling Errors in Household Surveys: A Technical Study. New York: United Nations Department for Economic and Social Information and Analysis. (Statistical Division INT-92-P80-15E).
  50. VERMA V., BETTI G. (2005), Sampling errors and design effects, Working Papers, no. 53, Dipartimento di Metodi Quantitativi, Universita di Siena.
  51. VERMA, V., BETTI, G. (2010): Taylor linearization sampling errors and design effects for poverty measures and other complex statistics, Journal of Applied Statistics; iFirst.
  52. WOLTER, K.M. (1985), Introduction to Variance Estimation, Springer-Verlag, New York.
  53. YUNG, W. and RAO, J.N.K. (1996). Jackknife Linearization Variance Estimators Under Stratified Multi-Stage Sampling. Survey Methodology, 22, pp. 23-31.
  54. ZASĘPA, R. (1972), Sampling Methods, PWE, Warsaw (in Polish).
  55. ZASEPA, R. (1993). Precision of family budget survey results, Wiadomosci Statystyczne, No. 3. (in Polish).
  56. ZIĘBA, A. and KORDOS, J. (2010), Comparing Three Methods of Standard Error Estimation for Poverty Measures. In: J. Wywiał, W. Gamrot (Eds), Research in Social and Economic Surveys, Katowice, University of Economics.
Cited by
Show
ISSN
1234-7655
Language
eng
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu