BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Singh Rahul (Govt. of U.P, Lucknow, India), Singh S.K. (Banaras Hindu University, India), Singh Umesh (Banaras Hindu University, India), Singh G.P. (Banaras Hindu University, India)
Title
Bayes Estimator of Generalized-Exponential Parameters Under General Entropyoss Function Using Lindley's Approximation
Source
Statistics in Transition, 2009, vol. 10, nr 1, s. 109-127, rys., bibliogr. s. 126-127
Keyword
Estymatory, Estymacja bayesowska
Estimators, Bayesian estimation
Note
summ.
Abstract
In this paper, we have obtained the Bayes Estimator of scale and shape parameter of Generalized-Exponential using Lindley's approximation (L-approximation) under GENERAL ENTROPY loss functions. The proposed estimators have been compared with the corresponding MLE for their risks based on simulated samples from the Generalized-Exponential distribution. (original abstract)
Accessibility
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of Poznań University of Economics and Business
The Main Library of the Wroclaw University of Economics
Full text
Show
Bibliography
Show
  1. AHMADI, J., DOOSTPARAST, M., & PARSIAN, A. (2005) Estimation and prediction in a two parameter exponential distribution based on k-record values under LINEX loss function. Commun. Statist. Theor. Meth. 34:795- 805.
  2. BAIN, L.J. & ENGELHARDT, M. (1991) Statistical Analysis of Reliability and Life Testing Models - Theory and Methods. New York: Marcel Dekker, Inc.
  3. BASU, A. P. & EBRAHIMI, N. (1991) Bayesian approach to life testing and reliability estimation using asymmetric loss-function. J. Statist. Plann. Infer. 29:21-31.
  4. CALABRIA, R. and PULCINI G. (1994 a); "An engineering approach to Bayes estimation For the Weibull distribution". Microelectron Relib, 34, 789- 802.
  5. CALABRIA, R. & PULCINI, G. (1996) Point estimation under asymmetric loss functions for left truncated exponential samples. Commun. Statist. Theor. Meth. 25(3):585-600.
  6. DEY, D.K., GHOSH, M. and SRINIVASAN,C. (1987)."Simultaneous estimation of Parameters under entropy loss", J. Statist. Plann. Inference, 347-363.
  7. DEY, D.K. and Pei-San LIAO LIU (1992). " On comparison of estimators in a generalized life model", Microelectron. Reliab., 32, 207-221.
  8. GUPTA, R.D. & KUNDU, D. (1999) Generalised-Exponential Distribution, Australia and New Zealand Journal of Statistics, 41,173-188.
  9. GUPTA, R.D. & KUNDU, D. (2002) Generalised-Exponential Distribution, Journal of Applied Statistical Society.
  10. JAHEEN, Z. F. (2005) On record statistics from a mixture of two exponential distributions. J. Statist. Computat. Simul. 75(1):1-11.
  11. LINDLEY, D.V. (1980) Approximate Bayes methods. Bayesian Statistics, Valency.
  12. Raqab, M.Z. & Ahsanullah, M (2001) Estimation of location and scale parameter of Generalised-Exponential Distribution based on Order Statistics. Journal of Statistical Computation and Simulation, 69, 2, 109-124.
  13. SINGH, U., GUPTA, P. K., & UPADHYAY, S. K. (2005) Estimation of parameters for exponentiated-Weibull family under Type-II censoring scheme. Omputat. Statist. DataAnal. 48(3):509-523.
  14. PARSIAN,A. and SANJARI FARSIPOUR,N(1993). "On the admissibility and inadmissibility of estimators of scale parameters using an asymmetric loss function", Commun. Statist. Theory Meth, 22,2877-2901.
  15. P.K. SINGH, S.K. SINGH and U. SINGH (2008) Bayes Estimator of Inverse Gaussian Parameters Under General Entropy Loss Function Using Lindley's Approximation. Appearing in Vol. 37, Issue 4, Communications in statistics: Simulation and Computation
  16. SOLIMAN, A. A. (2002) Reliability estimation in a generalized life-model with application to the Burr-XII. IEEE Trans. Reliabil. 51: 337 -343.
  17. VARIAN, H. R. (1975) A Bayesian approach to real state assessment. In: Stephen, E. F. & Zellner, A. ( Eds.) Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage, pp. 195-208. Amsterdam: North- Holland.
  18. ZELLNER, A. (1986) A Bayesian Estimation and Prediction using Asymmetric Loss function. JASA, 81, 446- 451.
Cited by
Show
ISSN
1234-7655
Language
eng
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu