BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Baryła Anna (Warsaw University of Life Sciences - SGGW), Stańczyk Tomasz (Warsaw University of Life Sciences - SGGW)
Changes of Soil Microrelief under the Influence of Simulated Rainfall
Infrastruktura i Ekologia Terenów Wiejskich, 2016, nr IV/4, s. 1723-1731, rys., tab., bibliogr. 24 poz.
Infrastructure and Ecology of Rural Areas
Gleboznawstwo, Zasoby wodne, Klimat
Soil science, Water resources, Climate
Soil microrelief is one of the factors affecting wind and water erosion process. Spatial variability of soil surface (microrelief) influences initiation of the surface runoff and water flow mainly through depressions, where the runoff is delayed and infiltration increases owing to the interception of the flowing water. The research was conducted to assess the changes of relief of two soils (sandy loam and fine sand) under the influence of rainfall in a model experiment. The soil microrelief was determined by means of a contactless 3D scanner using the effect of line distortion as light beam illuminating the object surface (so called Moire pattern). On the basis of obtained results, maps of the differences in the scanned surface elevations were plotted in ArcGIS programme and the soil losses volume was computed. RR indicator calculated for sandy loam was decreasing with increasing depth of simulated rainfall. No such dependence was observed for loose sand.(original abstract)
Full text
  1. Allmaras RR., Burwell RE., Larson WE., Holt RF. (1966). Total porosity and random roughness of the interrow zone as influenced by tillage. In USDA, Conservation Research Report no. 7. US Government Printing Office, Washington, Dc. pp. 1-22.
  2. Arvidsson J., Bölenius E. (2006). Effect of soil water content during primary tillage - laser measurements of soil surface changes. Soil and Tillage Research 90: 222-229.
  3. Bielska A., Oberski T. (2014). Wyłączenie spod zabudowy gruntów nadmiernie uwilgotnionych klasyfikowanych za pomocą narzędzi GIS. Infrastruktura i Ekologia Terenów Wiejskich. Nr 2014/ II (2 (Jun 2014)). (Exclusion of Lands from Development For Their Excessive Soil Moisture Content, Classified with the Use of GIS Tools).
  4. Darboux F., Gasuel-Odoux C., Davy P. (2002). Effect of surface water storage by soil roughness on overland-flow generation. Earth Surface Processes and Landform 27, 223-233.
  5. Darboux F., Huang C. (2005). Does soil surface roughness increase or decrease water and particle transfer?. Soil Science Society of America Journal 69: 748-756.
  6. Dąbek P., Żmuda R., Ćmielewski B., Szczepański J., (2014). Analysis of water erosion processes using terrestrial laser scanning. Acta Geodynamica et Geomaterialia 11(1 (173)):45-52.
  7. Elbasit Mohamed A. M. (2009). Modeling of interrill sediment generation and soil microtopography dynamics under variable simulated rainfall erosivity.
  8. Govers G., Takken I., Helming K. (2000). Soil roughness and overland flow. Agronomei 20: 131-146.
  9. Helming K., Romkens MJM, Prasad SN. (1998). Surface roughness related processes of runoff and soil loss: a flume study. Soil Science Society of America Journal 62, 243-250.
  10. Huang C., Bradford JM. (1990). Depressional storage for Markov-Gaussian surfaces. Water Resources Research 26(9): 2235-2242.
  11. Huang C., White EG., Thwaite EG., Bendeli A. (1988). A noncontact laser system for measuring soil surface topography. Soil Science Society of America Journal 52: 350-355.
  12. Jeschke W. (1990). Digital close-range photogrammetry for surface measurement. International Archive of Photogrammetry and Remote Sensing 28: 1058-1065.
  13. Linden DR, Van Doren JrJ. (1986). Parameters for characterizing tillage-induced soil surface roughness. Soil Science Society of America Journal 50: 1560-1565.
  14. Magunda MK, Larson WE, Linden DR, Nater EA. (1997). Changes in microrelief and their effects on infiltration and erosion during simulated rainfall. Soil Technology. 10: 57-67.
  15. Onstad CA, Wolf ML, Larson, CL, Slack DC. (1984). Tilled soil subsidence during repeated wetting. Transaction of ASAE 27: 733-736.
  16. Rejman J., Link M., Usowicz B. (1996). Parametryzacja mikroreliefu powierzchni gleby w doświadczeniu modelowym. Ogólnopolskie Sympozjum Naukowe. Ochrona agroekosystemów zagrożonych erozją. Puławy wrzesień 1996.
  17. Saleh A. (1993). Soil roughness measurement: chain method. Journal of Soil and Water Conservation 48: 527-529.
  18. Steichen JM. (1984). Infiltration and random roughness of tilled and untilled claypan soil. Soil and Tillage Research 4: 251-262.
  19. Szal M., Herma S. (2011). Metodyka projektowania cyfrowych modeli produktów z wykorzystaniem wybranych technik inżynierii odwrotnej. Modele inżynierii teleinformatyki wybrane zastosowania. Praca zbiorowa pod red. Bzdyra K. Wydawnictwo uczelniane Politechniki Koszalińskiej. Koszalin.
  20. Taconet O., Ciarletti V. (2007) Estimating soil roughness indices on ridge-and-furrow surface using stereo photogrammetry. Soil and Tillage Research 93: 64-76.
  21. Wagner LE., Yu Y. (1991). Digitization of profile meter photographs. Transaction of ASAE 34(2): 412-416.
  22. Wesemael BV, Poesen J, Figueiredo TD, Govers G. (1996). Surface roughness evolution of soils containing rock fragments. Earth Surface Processes and Landforms 21: 399-411.
  23. Wischmeier W.H., Smith D.D. (1978). Predicting Rainfall Erosion Losses. A guide to conservation planning. Agriculture Handbook No.537. USDA-SEA, US. Govt. Printing Office, Washington, DC.
  24. Witzurki A., Metynowska M., Sanecki J., Klewski A., Sobczyk I. (2016). Wykorzystanie systemu typu GIS na przykładzie Parku Narodowego Ujście Warty. Infrastruktura i Ekologia Terenów Wiejskich. Nr 2016/ III (2 (Jun 2016). (Application of GIS system on the example of Ujście Warty National Park).
Cited by
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu