BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Sheynin Oscar (International Statistical Institute, International Academy of History of Science)
Title
Kepler as a Statistician
Kepler jako statystyk
Source
Śląski Przegląd Statystyczny, 2017, nr 15 (21), s. 227-232, bibliogr. 18 poz.
Silesian Statistical Review
Keyword
Metoda Monte Carlo, Statystyka
Monte Carlo method, Statistics
Note
streszcz., summ.
Kepler Johannes
Abstract
Wykorzystując swoje poprzednie publikacje zamieszczone w bibliografii, autor w artykule opisał pracę Keplera stanowiącą matematyczne ujęcie obserwacji i astrologii. Przede wszystkim praca poświęcona jest kwestii odrzucenia ptolemeuszowskiego systemu świata oraz korelacji cech jakościowych w astrologii.(abstrakt oryginalny)

Drawing on my previous publications (see Bibliography), I describe Kepler's work on the mathematical treatment of observations and astrology. In particular, I investigate how he rejected the Ptolemaic system of the world and note that his astrology had the features of qualitative correlation.(original abstract)
Accessibility
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of the Wroclaw University of Economics
Full text
Show
Bibliography
Show
  1. Eisenhart C.,1976, Discussion of invited papers on history of statistics, Bull. Intern. Stat. Inst., vol. 46, pp. 355-357.
  2. Hellman C.D.,1970, Brahe, Dict. Scient, Biogr., vol. 2, pp. 401-416.
  3. Hippocrates, 1952, Aphorisms, No. 44. Great Books of Western World, vol. 10, pp. 131-144.
  4. Kepler J., 1601, in Latin, On the most certain foundation of astrology. Proc. Amer. Phil. Soc., vol. 123, 1979, pp. 85-116.
  5. Kepler J., 1606, in Latin, Über den Neuen Stern im Fuß des Schlangenträger, Würzburg 2006.
  6. Kepler J., 1609, in Latin, New Astronomy, Cambridge, 1992, translated by W. H. Donahue.
  7. Kepler J., 1610, in Latin, Tertius interveniens. Ges. Werke, Bd. 4. München, 1941, pp. 145-258.
  8. Kepler J., 1619, in Latin, Weltharmonik, München-Berlin, 1939, Harmony of the World, Philadelphia 1997.
  9. Kepler J., 1627, An den Senat von Ulm, Brief 30 Juli 1627, [in:] Caspar M., von Dyck W., 1930, Kepler in seinen Briefen, München-Berlin, Bde 1-2. Bd. 2.
  10. Kepler J., 1634, in Latin, Somnium. München-Berlin, 1967 in English.
  11. Petrov V.V.,1954, in Russian, On the method of least squares and its extreme properties, Uspekhi Matematich. Nauk, vol. 9, no. 1, pp. 41-62.
  12. Ptolemy, 1956, in Greek, Tetrabiblos, London, in Greek and English.
  13. Sheynin O., 1973, Mathematical treatment of astronomical observations (a historical essay), Arch. Hist. Ex. Sci., vol. 11, pp. 97-126.
  14. Sheynin O., 1974, On the prehistory of the theory of probability, Arch. Hist. Ex. Sci, vol. 12, pp. 97-141.
  15. Sheynin O., 1977, Kepler as a statistician, Bull. Intern. Stat. Inst., vol. 46, pp. 341-354.
  16. Sheynin O., 1978, Kepler, Johannes, [in:] Kruskal W.H., Tanur J.M. (eds), Intern. Enc. of Statistics, vols 1-2. New York-London, pp. 487-488.
  17. Sheynin O., 1993, The treatment of observations in early astronomy, Arch. Hist. Ex. Sci., vol. 46, pp. 153-192.
  18. Sheynin O., 2014, Randomness and determinism. Why are the planetary orbits elliptical?, Śląski Przegląd Statystyczny, Silesian Stat. Rev., no. 12 (18), pp. 57-74.
Cited by
Show
ISSN
1644-6739
Language
eng
URI / DOI
http://dx.doi.org/10.15611/sps.2017.15.11
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu