BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Nawalany Grzegorz (University of Agriculture in Krakow), Herbut Piotr (University of Agriculture in Krakow), Sokołowski Paweł (University of Agriculture in Krakow), Angrecka Sabina (University of Agriculture in Krakow)
Title
The Distribution of Deep-Litter Temperature in a Dairy Barn
Source
Infrastruktura i Ekologia Terenów Wiejskich, 2017, nr II/2, s. 803-811, rys., bibliogr. 20 poz.
Infrastructure and Ecology of Rural Areas
Keyword
Hodowla zwierząt, Mikroklimat, Wyniki badań
Animal husbandry, Microclimate, Research results
Note
summ.
Abstract
The paper presents results of studies of some indoor microclimate parameters and temperature of litter bedding in a freestall barn used to house dairy cattle in a deep-litter bedding system. The studies were conducted in the period from 22 March 2014 to 22 March 2015. The analysis of distribution of litter surface temperature showed its strong relationship with indoor air temperature. In summer, temporary exceedances of the allowable indoor air temperature by even 12 °C were noted. The studies showed a significant effect of the number of animals in the barn on litter surface temperature. In the periods when cows stayed in the barn, two zones could be distinguished: the sidewall zone 1.5 m wide at the western outside wall of the building and the inner zone encompassing the remaining part of the barn. Differences in litter temperature between these zones, when cows stayed in the barn, reached 10°C. When the building was empty and animals were on pasture, the differences between litter surface temperatures were much smaller and did not exceed 3°C. (original abstract)
Full text
Show
Bibliography
Show
  1. Akyuz A., Boyaci S., Cayli A. (2010). Determination of critical period for dairy cows rising temperature humidity index. Journal of Animal and Veterinary Advances, 9 (13): 1824-1827.
  2. Bohmanova J., Misztal I., Cole J.B. (2007). Temperature-humidity indices as indicators of milk production losses due to heat stress. Journal of Dairy Science, 90 (4): 1947-1956.
  3. Bouraoui R., Lahmar M., Majdoub A., Djemali M., Belyea R. (2002). The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Animal Research, 51 (6): 479-491.
  4. Chodanowicz B., Woliński J., Wolińska J. (2009). Problemy chowu bydła w oborach bez izolacji termicznej. Inżynieria Rolnicza, R. 13, nr 5: 17-21.
  5. Daniel Z. (2008). Wpływ mikroklimatu obory na mleczność krów. Inżynieria Rolnicza, 9(107)/2008: 67-73.
  6. Jaśkowski J.M., Urbaniak K., Olechnowicz J. (2005). Stres cieplny u krów - zaburzenia płodności i ich profilaktyka. Życie weterynaryjne, Nr 80(1): 18-21.
  7. Fiedorowicz G., Mazur K. (2011). Mikroklimat pomieszczeń w oborach wolnostanowiskowych w okresie jesienno-zimowym cz. II. Problemy Inżynierii Rolniczej, nr 3/2011: 111-120.
  8. Herbut P., Angrecka S. (2012). Forming of temperature-humidity index (THI) and milk production of cows in the free-stall barn during the period of summer heat. Animal Science Papers & Reports. 2012, Vol. 30 Issue 4: 363-372.
  9. Herbut P., Angrecka S., Nawalany G. (2012). The impact of barriers inside a fishbone milking parlor on efficiency of the ventilation system. Ann. Anim. Sci., 12: 575-584.
  10. Herbut P., Angrecka S., Nawalany G., Adamczyk K. (2015). Spatial and temporal distribution of temperature, relative humidity and air velocity in a parallel milking parlour during summer period. Ann. Anim. Sci., Vol. 15, No. 2 (2015): 517-526.
  11. Kapuinen P. (1993). Methods and Buildings for Beef Production II. Agricultural Research Centre of Finland, Institute of Agricultural Engineering. Research Report No. 66: 1-77.
  12. Mathot M., Decruyenaere V., Lambert R., Stilmant D. (2016). Deep litter removal frequency rate influences on greenhouse gas emissions from barns for beef heifers and from manure stores. Agriculture, Ecosystems and Environment, 233 (2016): 94-105.
  13. Mroczkowski S. (2006). Stosunek człowieka do zwierząt. Prz. Hod., nr 8: 15-17.
  14. Nawalany G. (2012). A proposal to apply operative temperature for the evaluation of thermal conditions in the broiler living zone. Archiv fur Geflugelkunde, 76 (1): 49-54.
  15. Nawalany G., Sokołowski P. (2015). Characteristics of the temperature and humidity conditions in a deep-litter barn in a summer season. Infrastruktura i Ekologia Terenów Wiejskich, Nr IV/3/2015: 1399-1408.
  16. Pereira J., Misselbrook T.H., Chadwick D.R., Coutinho J., Trindade H. (2012). Effects of temperature and dairy cattle excreta characteristics on potential ammonia and greenhouse gas emissions from housing: A laboratory study. Biosystems Engineering 112 (2012): 138-150.
  17. Radoń J., Bieda W., Lendelova J., Pogran S. (2014). Computational model of heat Exchange between dairy cow and bedding. Computers and Electronics in Agriculture, 107 (2014): 29-37.
  18. Sokołowski P., Nawalany G. (2016). Kształtowanie się warunków cieplnowilgotnościowych w oborze wolnostanowiskowej z utrzymaniem zwierząt na głębokiej ściółce w okresie zimowym. Inżynieria Ekologiczna, 49: 74-80.
  19. Solan M., Jóźwik M. (2009). Wpływ mikroklimatu oraz systemu utrzymania na dobrostan krów mlecznych. Wiadomości Zootechniczne, nr 1: 25-29.
  20. Winnicki S., Nawrocki L., Werbiński R., Myczko A. (2003). Warunki bytowania krów a jakość mleka. IX Międzynarodowa Konferencja Naukowa, IBMER, Warszawa: 123-125.
Cited by
Show
ISSN
1732-5587
Language
eng
URI / DOI
http://dx.medra.org/10.14597/infraeco.2017.2.2.062
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu