BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Gwadera Monika (Krakow University of Technology)
Title
Adsorption-Desorption Processes in Adsorption Chillers
Proces adsorpcji i desorpcji w agregacie adsorpcyjnym
Source
Agricultural Engineering, 2016, R. 20, nr 2 (158), s. 81-89, tab., rys., bibliogr. 21 poz.
Keyword
Rolnictwo, Badanie jakości, Wyniki badań, Modelowanie matematyczne
Agriculture, Quality research, Research results, Mathematical modeling
Note
summ., streszcz.
Abstract
Niniejsza praca ma na celu zaprezentowanie technologii agregatów adsorpcyjnych. Przedstawiono zasadę działania takich systemów, a mianowicie par adsorbat-adsorbent, które są często stosowane oraz technik ulepszania, które pozwalają na poprawę ich wydajności. Przedyskutowano także analizę przepływu masy oraz zasad modelowania matematycznego takich systemów. W dalszej części przedstawiono wyniki badań eksperymentalnych oraz porównanie takich wyników z obliczeniami na podstawie modelu matematycznego adsorpcji.(abstrakt oryginalny)

The aim of this paper is to present the adsorption chillers technology. The operating principle of these systems, the adsorbent-adsorbate pairs that are frequently applied and the enhancement techniques that allow improvement of their efficiency are presented. Analysis of the mass transfer and principles of mathematical modeling of such systems are also discussed. In the further part of the text, the results of experimental studies and comparison of these results with calculations based on the mathematical model of adsorption were presented.(original abstract)
Full text
Show
Bibliography
Show
  1. Anyanwu, E.E. (2004). Review of solid adsorption refrigeration II: An overview of the principles and theory. Energy Conversion and Management, 45, 1279-1295.
  2. Bonaccorsi, L., Freni, A., Proverbio, E., Restuccia, G., Russo, F. (2006).Zeolite coated copper foams for heat pumping applications. Microporous and Mesoporous Materials, 91, 7-14.
  3. Chang, K.S., Chen, M.T., Chung, T.W. (2005). Effects of the thickness and particle size of silica gel on the heat and mass transfer performance of a silica gel-coated bed for air-conditioning adsorption system. Applied Thermal Engineering, 25, 2330-2340.
  4. Daßler, I., Mittelbach, W. (2012). Solar cooling with adsorption chillers. Energy Procedia, 30, 921-929.
  5. Demir, H., Mobedi, M., Ulku, S. (2008). A review on adsorption heat pump: Problems and solutions. Renewable and Sustainable Energy Reviews, 12, 2381-2403.
  6. Demir, H., Mobedi, M., Ulku, S. (2011). Microcalorimetric investigation of water vapor adsorption on silica gel.Journal of Thermal Analysis and Calorimetry, 105, 375-382.
  7. Fan, Y., Luo, L., Souyri, B. (2007). Review of solar sorption refrigeration technologies: Development and applications. Renewable and Sustainable Energy Reviews, 11, 1758-1775.
  8. Freni, A., Bonaccorsi, L., Proverbio, E., Maggio, G., Restuccia, G. (2009).Zeolite synthesised on copper foam for adsorption chillers: A mathematical model. Microporous and Mesoporous Materials, 120, 402-409.
  9. Glueckauf, E. (1955). Theory of chromatography.Part 10.Formulae for diffusion into spheres and their application to chromatography. Transactions of the Faraday Society, 51, 1540-1551.
  10. Gwadera, M., Kupiec, K. (2015). Investigation of water vapor adsorption on silica gel grains coated on a metal pipe. Adsorption Science and Technology, in press.
  11. Ng, K. C., Chua, H. T., Chung, C. Y., Loke, C. H., Kashiwagi, T., Akisawa, A., Saha, B. B. (2001). Experimental investigation of the silica gel-water adsorption isotherm characteristic. Applied Thermal Engineering, 21, 1631-1642.
  12. Rezk, A. (2012). Theoretical and experimental investigation of silica gel/water adsorption refrigeration systems, PhD thesis, The University of Birmingham, United Kingdom.
  13. Ruthven, D.M. (1984). Principles of adsorption and adsorption processes, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore. ISBN 0-471-86606-7.
  14. Seader, J.D., Henley, E.J. (2006). Separation processes principles, John Wiley & Sons, New York. ISBN 0-471-46480-5.
  15. Sharafian, A., Bahrami, M. (2014). Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration. Renewable and Sustainable Energy Reviews, 30, 440-451.
  16. Solmus, I., Rees, D. A. S., Yamali, C., Baker D. (2012). A two-energy equation model for dynamic heat and mass transfer in an adsorbent bed using silica gel/water pair.International Journal of-Heat and Mass Transfer, 55, 5275-5288.
  17. Wang, D.C., Li, Y.H., Li, D., Xia, Y.Z., Zhang, J.P. (2010). A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems. Renewable and Sustainable Energy Reviews, 14, 334-353.
  18. Wang, L. W., Wang, R. Z., Oliveira, R. G. (2009). A review on adsorption working pairs for refrigeration. Renewable and Sustainable Energy Reviews, 13, 518-534.
  19. Wu, W. D., Zhang, H., Sun, D. W. (2009). Mathematical simulation and experimental study of a modified zeolite 13X-water adsorption refrigeration module. Applied Thermal Engineering, 29, 645-651.
  20. Wang, L., Zhu, D., Tan, Y. (1999). Heat Transfer Enhancement of the Adsorber of an Adsorption Heat Pump.Adsorption, 5, 279-286.
  21. Yang, R.T. (1997). Gas separation by adsorption processes, Imperial College Press, London (Originally published: Butterworths, Boston, London, 1987). ISBN 978-1-86094-047-7.
Cited by
Show
ISSN
2083-1587
Language
eng
URI / DOI
http://dx.doi.org/10.1515/agriceng-2016-0029
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu