BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Andreasik Jan (University of Information Technology and Management in Rzeszow, Poland)
Title
The Architecture of the Intelligent Case-Based Reasoning Recommender System (CBR RS) Recommending Preventive/Corrective Procedures in the Occupational Health and Safety Management System in an Enterprise
Architektura inteligentnego systemu klasy CBR RS (Case-Based Reasoning Recommender System) rekomendującego procedury zapobiegawczo-korygujące w systemie BHP przedsiębiorstwa
Source
Barometr Regionalny, 2017, t. 15, nr 3, s. 109-124, rys., bibliogr. 24 poz.
Keyword
System rekomendujący, Monitorowanie procesów, System zarządzania BHP
Recommender system, Process monitoring, Health and safety management system
Note
JEL Classification: C6, C88, J28, M54
streszcz., summ.
Abstract
W pracy przedstawiono oryginalną architekturę systemu rekomendującego procedury zapobiegawczo-korygujące w systemie BHP przedsiębiorstwa: Compliance OHS-CBR. System składa się z czterech modułów: moduł A: ontologia profilu BHP stanowiska pracy, moduł B: ontologia indeksacji procedur zapobiegawczo-korygujących OIP-ZK, moduł C: system ewidencjonowania procesu monitorowania niezgodności z wymaganiami BHP, moduł D: silnik wydawania rekomendacji w metodologii CBR. Istotą podejścia prezentowanego w niniejszej pracy jest integracja systemu monitorowania procesu analizy niezgodności z wymaganiami BHP na stanowiskach pracy (zastosowano oprogramowanie ADONIS) z systemem wnioskowania z bazy przypadków CBR. Platformą integracji są dwie ontologie: ontologia profilu zgodności z wymaganiami BHP na stanowisku pracy (OP-BHP) oraz ontologia indeksacji procedur zapobiegawczo--korygujących OIP-ZK. Obydwie ontologie przedstawiono w edytorze Protege 5 języka OWL. Silnikami wnioskującymi zgodnie z metodologią CBR są alternatywnie: myCBR oraz jCOLLIBRI. (abstrakt oryginalny)

The paper presents the original architecture of the system recommending preventive/corrective procedures in the occupational health and safety management system in an enterprise: ComplianceOHS-CBR. The system consists of four modules: Module A - an ontology of the workplace OHS profile, Module B - an ontology of preventive/corrective procedure indexation OPCPI, Module C - a recording system of the monitoring process of non-compliance with the requirements of OHS, Module D - a recommending engine consistent with the CBR methodology. The essence of the approach presented in this paper is integration of the monitoring system of the analysis process of non-compliance with the requirements of OHS at the workplace (the ADONIS system was used) with the case-based reasoning process (CBR). The integration platform consists of two ontologies: an ontology of profile compliance with the workplace OHS requirements (OP-OHS) and an ontology of preventive/corrective procedure indexation (OPCPI). Both of the ontologies are presented in the Protege 5 OWL editor. Inference engines are alternatively, according to the CBR methodology, myCBR and jCOLLIBRI. (original abstract)
Accessibility
The Library of Warsaw School of Economics
Full text
Show
Bibliography
Show
  1. Aamodt, A., and E. Plaza. 1994. "Case-Based Reasoning - Foundational Issues, Methodological Variations, and System Approaches." Ai Communications 7 (1): 39-59.
  2. Amailef, K., and J. Lu. 2013. "Ontology-Supported Case-Based Reasoning Approach for Intelligent m-Government Emergency Response Services." Decision Support Systems 55 (1): 79-97. doi: 10.1016/j.dss.2012.12.034.
  3. Andreasik, J. 2015. "Koncepcja ontologii systemu bezpieczeństwa i higieny pracy." Barometr Regionalny. Analizy i Prognozy 13 (3): 179-189.
  4. Bergmann, R., J. Kolodner, and E. Plaza. 2005. "Representation in Case-Based Reasoning." Knowledge Engineering Review 20 (3): 209-213. doi: 10.1017/S0269888906000555.
  5. Bobadilla, J., F. Ortega, A. Hernando, and A. Gutierrez. 2013. "Recommender Systems Survey." Knowledge-Based Systems 46: 109-132. doi: 10.1016/j.knosys.2013.03.012.
  6. Dendani-Hadiby, N., and M.T. Khadir. 2013. "A Fault Diagnosis Application Based on a Combination Case-Based Reasoning and Ontology Approach." International Journal of Knowledge-Based and Intelligent Engineering Systems 17 (4): 305-317. doi: 10.3233/KES-130280.
  7. Dietz, J.L.G. 2006. Enterprise Ontology. Theory and Methodology. Berlin - New York: Springer.
  8. El-Sappagh, S.H., and M. Elmogy. 2015. "Case Based Reasoning: Case Representation Methodologies." International Journal of Advanced Computer Science and Applications 6 (11): 192-208.
  9. Gawin, B., and B. Marcinkowski. 2013. Symulacja procesów biznesowych. Standardy BPMS i BPMN w praktyce, Onepress. Gliwice: Helion.
  10. Hinkelmann, K., A. Gerber, D. Karagiannis, B. Thoenssen, A. van der Merwe, and R. Woitsch. 2016. "A New Paradigm for the Continuous Alignment of Business and IT: Combining Enterprise Architecture Modelling and Enterprise Ontology." Computers in Industry 79: 77-86. doi: 10.1016/j.compind.2015.07.009.
  11. Kaplan, R.S., and D.P. Norton. 1996. The Balanced Scorecard. Translating Strategy into Action. Boston, Mass.: Harvard Business School Press.
  12. Lu, J., D.S. Wu, M.S. Mao, W. Wang, and G.Q. Zhang. 2015. "Recommender System Application Developments: a Survey." Decision Support Systems 74: 12-32. doi: 10.1016/j.dss.2015.03.008.
  13. Lu, Y., Q.M. Li, and W.J. Xiao. 2013. "Case-Based Reasoning for Automated Safety Risk Analysis on Subway Operation: Case Representation and Retrieval." Safety Science 57: 75-81. doi: 10.1016/j.ssci.2013.01.020.
  14. Ly, L.T., F.M. Maggi, M. Montali, S. Rinderle-Ma, and W.M.P. van der Aalst. 2015. "Compliance Monitoring in Business Processes: Functionalities, Application, and Tool-Support." Information Systems 54: 209-234. doi: 10.1016/j.is.2015.02.007.
  15. Rao, S.S., and A. Nayak. 2017. "Enterprise Ontology Model for Tacit Knowledge Externalization in Socio-Technical Enterprises." Interdisciplinary Journal of Information, Knowledge, and Management 12: 99-124.
  16. Recio-Garcia, J.A., P.A. Gonzalez-Calero, and B. Diaz-Agudo. 2014. "jCOLIBRI2: A Framework for Building Case-Based Reasoning Systems." Science of Computer Programming 79: 126-145. doi: 10.1016/j.scico.2012.04.002.
  17. Rintala, L., M. Leikola, C. Sauer, J. Aromaa, T. Roth-Berghofer, O. Forsen, and M. Lundstrom. 2017. "Designing Gold Extraction Processes: Performance Study of a Case-Based Reasoning System." Minerals Engineering 109: 42-53. doi: 10.1016/j.mineng.2017.02.013.
  18. Saracino, A., G. Antonioni, G. Spadoni, D. Guglielmi, E. Dottori, L. Flamigni, M. Malagoli, and V. Pacini. 2015. "Quantitative Assessment of Occupational Safety and Health: Application of a General Methodology to an Italian Multi-Utility Company." Safety Science 72: 75-82. doi: 10.1016/j.ssci.2014.08.007.
  19. Sauer, C. 2016. Knowledge Elicitation and Formalisation for Context and Explanation-Aware Computing with Case-Based Recommender Systems. Doctoral thesis, University of West London, London.
  20. Sauer, C., A. Kheirkhahzadeh, and T. Roth-Berghofer. 2016. Data Literacy in the Smart University Approach. Paper read at Learning Analytics and Knowledge Conference 2016, 2016.04.26, at Edinburgh, UK.
  21. Seck, M., and J. Barjis. 2015. "An Agent Based Approach for Simulating DEMO Enterprise Models." Complex Adaptive Systems, 2015 61: 246-253. doi: 10.1016/j.procs.2015.09.206.
  22. Teimourikia, M., and M. Fugini. 2017. "Ontology Development for Run-Time Safety Management Methodology in Smart Work Environments Using Ambient Knowledge." Future Generation Computer Systems - the International Journal of Escience 68: 428-441. doi: 10.1016/j.future.2016.07.003.
  23. Virkki-Hatakka, T., and G.L.L. Reniers. 2009. "A Case-Based Reasoning Safety Decision Support Tool: Nextcase/Safety." Expert Systems with Applications 36 (7): 10374-10380. doi: 10.1016/j.eswa.2009.01.059.
  24. Yahia, Z., J. Iijima, N.A. Harraz, and A.B. Eltawil. 2017. "A Design and Engineering Methodology for Organization-Based Simulation Model for Operating Room Scheduling Problems." Simulation-Transactions of the Society for Modeling and Simulation International 93 (5): 363-378. doi: 10.1177/0037549716687376.
Cited by
Show
ISSN
1644-9398
Language
eng
URI / DOI
http://dx.doi.org/doi.org/10.56583/br.430
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu