- Author
- Dzikowski Piotr (University of Zielona Góra)
- Title
- Supply Networks and Innovation Activity in Medium-High Technology Manufacturing Industries in Poland
Sieci dostaw a aktywność innowacyjna przemysłu średniozaawansowanej technologii w Polsce - Source
- Acta Scientiarum Polonorum. Oeconomia, 2018, R. 17, nr 1, s. 13-22, tab., bibliogr. 29 poz.
- Keyword
- Innowacyjność, Technologia, Przemysł
Innovative character, Technology, Industry - Note
- streszcz., summ.
- Abstract
- Rosnąca dynamika rynku wymaga zaangażowania coraz większej liczby partnerów, w tym dostawców, klientów i konkurentów działających w pobliżu firmy oraz w jej dalszym otoczeniu. Interakcja między uczestnikami takich sieci prowadzi do wymiany wiedzy i informacji, a proces ten przybiera niepowtarzalne formy charakterystyczne dla uczestników i środowiska, w którym występuje. Celem badania było określenie wpływu odległości i rodzaju relacji z konkurentem, dostawcą i klientem na rodzaj działalności innowacyjnej w przedsiębiorstwach średniozaawansowanej technologii w Polsce. W pracy założono, że bliskie kontakty z konkurentem, dostawcą i klientem działającymi w niewielkiej odległości (lokalnie lub w regionie) wspierają działania innowacyjne. Przeprowadzona analiza wykazała, że krajowi i zagraniczni dostawcy oraz klienci i konkurenci wspierają działalność innowacyjną, a największy pozytywny wpływ na stymulowanie działalności innowacyjnej ma współpraca z dostawcami i odbiorcami zagranicznymi. (abstrakt oryginalny)
Increasing market dynamics requires the involvement of an increasing number of partners, including suppliers, customers and competitors located near the company and in its further surroundings. The interaction between participants in such networks leads to the exchange of knowledge and information, and this process takes on unique forms specific to the participants and the environment in which they occur. The study aims to determine the influence of distance and type of relationships with a competitor, supplier, and customer on the type of innovative activity in medium-high technology companies in Poland. The work assumes that close contacts with a competitor, supplier, and customer operating within a short distance support innovative activities. Domestic and foreign suppliers, customers and competitors are favored to undertake innovative activities, and the most positive influence on the stimulation of innovative activity is the cooperation with suppliers and foreign customers. (original abstract) - Accessibility
- The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of Poznań University of Economics and Business - Full text
- Show
- Bibliography
- Ahuja, G. (2000). Collaboration Networks, Structural Holes, and Innovation: A Longitudinal Study. Administrative Science Quarterly, 45 (3), 425-455.
- Aldrich, J.H., Nelson, F.D. (1984). Linear Probability, Logit, and Probit Models (Vol. 45). SAGE Publications, Thousand Oaks, CA.
- Bell, G.G. (2005). Clusters, networks, and firm innovativeness. Strategic Management Journal, 26 (3), 287-295.
- Binz, C., Truffer, B. (2017). Global Innovation Systems - A conceptual framework for innovation dynamics in transnational contexts. Research Policy, 46 (7), 1284-1298.
- Boschma, R. (2005). Proximity and Innovation: A Critical Assessment. Regional Studies, 39 (1), 61-74.
- Cassiman, B., Veugelers, R. (2006). In Search of Complementarity in Innovation Strategy: Internal R&D and External Knowledge Acquisition. Management Science, 52 (1), 68-82.
- Czakon, W. (2012). Sieci w zarządzaniu strategicznym. Oficyna Wolters a Kluwer Business, Warszawa.
- Dyba, W. (2016). Mechanisms of knowledge flows in bottom- up and top-down cluster initiatives. Regional Studies, Regional Science, 3 (1), 286-294.
- Dzikowski, P. (2015). The role of industry linkages in stimulating innovation activity of medium-high and high technology enterprises. Problemy Zarządzania, 13 (1), 238-256.
- Dzikowski, P. (2018). A bibliometric analysis of born global firms. Journal of Business Research, 85, 281-294.
- Edquist, C., Rees, G.M., Lorenzen, M., Vincent-Lancrin, S. (2001). Cties and regions in the new learning economy. OECD, Paris.
- Etzkowitz, H., Leydesdorff, L. (2000). The dynamics of innovation: from National Systems and "Mode 2" to a Triple Helix of university - industry - government relations. Research Policy, 29 (2), 109-123.
- Freel, M.S. (2003). Sectoral patterns of small firm innovation, networking and proximity. Research Policy, 32 (5), 751-770.
- Gallaud, D., Torre, A. (2005). Geographical proximity and the diffusion of knowledge. In Rethinking Regional Innovation and Change. Springer, New York, NY, 127-146.
- Gilbert, B.A., McDougall, P.P., Audretsch, D.B. (2008). Clusters, knowledge spillovers and new venture performance: An empirical examination. Journal of Business Venturing, 23 (4), 405-422.
- Janasz, W., Kozioł-Nadolna, K. (2011). Innowacje w organizacji. PWE, Warszawa.
- Leischnig, A., Geigenmueller, A., Lohmann, S. (2014). On the role of alliance management capability, organizational compatibility, and interaction quality in interorganizational technology transfer. Journal of Business Research, 67 (6), 1049-1057.
- Lemeshow, S., Sturdivant, R.X. (2013). Applied Logistic Regression. John Wiley & Sons, Hoboken, NJ.
- Liao, T.F. (1994). Interpreting Probability Models. Logit, Probit, and Other Generalized Linear Models (Vol. 101). SAGE Publications, Thousand Oaks, CA.
- McCann, B.T., Folta, T.B. (2011). Performance differentials within geographic clusters. Journal of Business Venturing, 26 (1), 104-123.
- Malerba, F. (2002). Sectoral systems of innovation and production. Research Policy, 31 (2), 247-264.
- Malerba, F. (2005). Sectoral systems of innovation: a framework for linking innovation to the knowledge base, structure and dynamics of sectors. Economics of Innovation and New Technology, 14 (1-2), 63-82.
- OECD (2005). Oslo Manual: Guidelines for Collecting and Interpreting Innovation Data. 3rd edn. OECD, Directorate for Science, Technology and Industry.
- Stanisz, A. (2016). Modele regresji logistycznej. Zastosowania w medycynie, naukach przyrodniczych i społecznych. StatSoft Polska, Kraków.
- Storper, M. (1995). The Resurgence of Regional Economies, Ten Years Later: The Region as a Nexus of Untraded Interdependencies. European Urban and Regional Studies, 2 (3), 191-221.
- Świadek, A., Dzikowski, P., Tomaszewski, M., Gorączkowska, J. (2016). Structural Determinants of Innovation in Industry: The Pavitt Model in the Polish Economy. Problemy Zarządzania, 14 (3), 202-224.
- Wal, A.L.J.T., Boschma, R. (2011). Co-evolution of Firms, Industries and Networks in Space. Regional Studies, 45 (7), 919-933.
- Wang, C., Rodan, S., Fruin, M., Xu, X. (2014). Knowledge Networks, Collaboration Networks, and Exploratory Innovation. Academy of Management Journal, 57 (2), 484-514.
- Zaheer, A., Bell, G.G. (2005). Benefiting from network position: firm capabilities, structural holes, and performance. Strategic Management Journal, 26 (9), 809-825.
- Cited by
- ISSN
- 1644-0757
- Language
- eng
- URI / DOI
- http://dx.doi.org/10.22630/ASPE.2018.17.1.2