BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Wieteska Grażyna (University of Lodz, Poland)
Title
The Domino Effect - Disruptions in Supply Chains
Efekt domina - zakłócenia w łańcuchach dostaw
Der Dominoeffekt - Störungen in Lieferketten
Source
LogForum, 2018, vol. 14, nr 4, s. 495-506, tab., bibliogr. 41 poz.
Keyword
Łańcuch dostaw, Efekt domino, Ryzyko
Supply chain, Domino effect, Risk
Note
summ., streszcz., zfsg.
Young Scientist Research, 2016 year, source of funding: Ministry of Science and Higher Education project title: "Strategies supply chains in an era of growing turbulence environment" project code: B1612100001321.02.
Abstract
Wstęp: Artykuł poświęcony jest zagadnieniu zakłóceń rozchodzących się wzdłuż łańcuchów dostaw. W dzisiejszym turbulentnym otoczeniu, przedsiębiorstwa narażone są na wzrastającą liczbę wewnętrznych i zewnętrznych zagrożeń. Niepożądane zdarzenia mogą być przyczyną poważnych strat w procesach i powodować efekt domina. W kontekście ciągłości działania i zarządzania ryzykiem, interesujące jest zaobserwowanie jaki kierunek mają najczęstsze zakłócenia (w dół czy w górę łańcucha dostaw) oraz jaka jest sekwencja zakłócanych procesów w łańcuchach dostaw w sytuacji kryzysowej.
Metody: Badanie zaprojektowano dwukierunkowo. W pierwszej kolejności przeprowadzono analizę literatury przedmiotu dotyczącą problematyki efektu domina w łańcuchach dostaw. Wykorzystano w tym celu metodę analizy źródeł wtórnych. W drugim etapie zrealizowano badanie ankietowe, które objęło 202 dużych przedsiębiorstw produkcyjnych funkcjonujących w Polsce. Operat losowania stanowiła baza największych polskich przedsiębiorstw z tzw. Listy 500 według "Rzeczpospolitej" oraz baza Bisnode.
Rezultaty: Zebrane dane zaprezentowane zostały w kilku tabelach. Ich analiza pozwoliła odpowiedzieć na postawione pytania badawcze. Zidentyfikowano najpoważniej zakłócane procesy łańcuchów dostaw, kierunek rozchodzenia się zakłóceń, wpływ zakłóceń na procesy klientów i dostawców a także rodzaje ryzyka zaburzające poszczególne procesy najpoważniej. Procesy łańcucha dostaw określono wykorzystując model łańcucha dostaw GSCF.
Wnioski: Efekt domina wystąpił w przypadku 95% analizowanych łańcuchów dostaw. Badania pokazują, że każdy proces łańcucha dostaw może stanowić epicentrum negatywnych skutków. Według respondentów, najpoważniejsze zakłócenia w ostatnich trzech latach dotyczyły bezpośrednio procesu produkcji. Zakłócenia te są też najczęściej bezpośrednim źródłem ryzyka dla skutecznego funkcjonowania innych procesów w przedsiębiorstwie. Zakłócenia rozprzestrzeniają się w łańcuchach dostaw wielokierunkowo. Niepewność otoczenia zewnętrznego jest dla firm szczególnie trudna do zarządzania. Zagrożenia pochodzące z makro otoczenia najczęściej bowiem w najpoważniejszy sposób zakłócały procesy badanych przedsiębiorstw, a w szczególności ich logistykę zaopatrzenia. Zakłócenia w zakupach i procesie zarządzania relacjami z dostawcami w najpoważniejszy sposób wpływają na procesy dostawców i klientów. (abstrakt oryginalny)

Background: This paper is devoted to the issue of the spread of disturbances along processes in supply chains. Today, in a turbulent global environment, companies are exposed to an increasing number of internal and external risks. The adverse events may sometimes bring serious negative consequences and cause a domino effect of disruptions in the supply chain. In the context of business continuity and risk management concepts, it is interesting to observe what the direction (up or/and down supply chain) of disruptions and the sequence of disrupted processes is during a crisis situations.
Methods: The conducted research was designed twofold. First, a systematic literature review of the domino effect in supply chains was conducted. Here, the desk research method was used. During the second stage, a survey was performed among 202 large manufacturing companies operating in Poland. The quantitative phase of the research used the Computer Assisted Telephone Interview (CATI) method. The sampling mainly used the "Rzeczpospolita" newspaper database "500 List".
Results: Data are gathered in several tables. The results supported the answering of four research questions. These concerned the most seriously disturbed processes in the supply chains of the researched companies in the last three years, the spread of disruptions along supply chain processes, process disruptions affecting clients and suppliers, and types of risks seriously disrupting supply chain processes. The processes were identified using GSCF model.
Conclusions: A domino effect of disturbances occurred in 95% of researched supply chains, with each supply chain process having the possibility of becoming its epicentre. However, according to the researched companies, the production process was the most common site of serious disruption in the last three years, and most likely to interfere with other processes. Disturbances spread multidirectional along supply chains. The uncertainty of the external environment is the most problematic to manage, because a macro environment that negatively affected a company was the most common risk, disrupting supply chains and, particularly, supply logistics. Disruptions of purchasing and supplier relationship management affect the processes of suppliers and clients in the most serious way. (original abstract)
Full text
Show
Bibliography
Show
  1. Andreoni V., Miola A., 2015. Climate change and supply-chain vulnerability. Methodologies for resilience and impacts quantification, International Journal of Emergency Services, 4(1), 6-26, http://dx.doi.org/10.1108/IJES-09-2014-0012.
  2. Barlow R.D., 2011. A disaster's domino effect: Japan's tragic events expected to rattle supply chain, Healthcare Purchasing News, 35(5) 52-53.
  3. Berliński T., 2000. Różnorodność postrzegania zagrożeń, Zarządzanie bezpieczeństwem. The diversity of threats perceptions. Threats management. in: Tyrała P. (red.) Międzynarodowa Konferencja Naukowa, Kraków 11-13 May 2000.
  4. Chen T. K., Liao H. H., Huang H. C., 2014. Macroeconomic risks of supply chain counterparties and corporate bond yield spreads, Review of Quantitative Finance and Accounting, 43(3), 463-481, http://dx.doi.org/10.1007/s11156-013-0382-8.
  5. Chopra S., Sodhi M. S., 2004. Managing risk to avoid supply chain breakdown, MIT Sloan Management Review, (1), 53-61.
  6. Christopher M., Holweg M., 2011. Supply Chain 2.0: managing supply chains in the era of turbulence, International Journal of Physical Distribution&Logistics Management, 41(1), 63-82, http://dx.doi.org/10.1108/09600031111101439.
  7. Cooper M. C., Lambert D.M., Pagh J. D, 1997. Supply Chain Management: More Than a New Name for Logistics, International Journal of Logistics Management, (8), 1-14. http://dx.doi.org/10.1108/09574099710805556.
  8. Durach Ch.F., Wieland A., Machuca J.A.D., 2015. Antecedents and dimensions of supply chain robustness: a systematic literature review, International Journal of Physical Distribution & Logistics Management, 45(1/2), 118-137, http://dx.doi.org/10.1108/IJPDLM-05-2013-0133.
  9. Fan Y., Stevenson M., 2018. A review of supply chain risk management: definition, theory, and research agenda, International Journal of Physical Distribution & Logistics Management, 48(3), 205-230, http://dx.doi.org/10.1108/IJPDLM-01-2017-0043
  10. Gordon R., 2004. The Domino Effect, American Vegetable Grower, 52(11), 4-4.
  11. Hachicha W., Elmsalmi M., 2014. An integrated approach based-structural modelling for risk prioritization in supply network management, Journal of Risk Research, 17(10), 1301-1324.
  12. Hallikas J., Puumalainen K., Vesterinen T., Virolainen V-M., 2005. Risk-based classification of supplier relationships, Journal of Purchasing & Supply Management, 11, 72-82, http://dx.doi.org/10.1016/j.pursup.2005.10.005.
  13. Hardy L., 2012, Hard-Working Drives: How Floods in Thailand Affect Us All. Available on the Internet, http://www.bbc.co.uk/news/business-17567635 (accessed 22 June 2018).
  14. Hertz S., 2006, Supply chain myopia and overlapping supply chains, Journal of Business & Industrial Marketing, 21(4), 208-217, http://dx.doi.org/10.1108/08858620610672579
  15. Hohenstein N. O., Feisel E., Hartmann E., & Giunipero, L., 2015, Research on the phenomenon of supply chain resilience: a systematic review and paths for further investigation, International Journal of Physical Distribution & Logistics Management, 45(1/2), 90-117, http://dx.doi.org/10.1108/IJPDLM-05-2013-0128.
  16. Johnson, M.E., 2001, Learning from toys: lessons in managing supply chain risk from toy industry, California Management Review, 43(3), 106-124.
  17. Jüttner U., 2005, Supply chain risk management, Understanding the business requirements from a practitioner perspective, The International Journal of Logistics Management, 16(1), 120-141, http://dx.doi.org/10.1108/09574090510617385.
  18. Kamalahmadi, M., & Parast, M. M., 2016. A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research, International Journal of Production Economics, 171, 116-133, http://dx.doi.org/10.1016/j.ijpe.2015.10.023
  19. Kayis B., Karningsih P.D., 2012. A knowledge-based system tool for assisting manufacturing organizations in identifying supply chain risks, Journal of Manufacturing Technology Management, 23(7), 834-852.
  20. Lambert D. M., Cooper M. C., 2000. Issues in Supply Chain Management, Industrial Marketing Management, 29, 65-83, http://dx.doi.org/10.1108/17410381211267682.
  21. ManMohan S. Sodhi, 2005. Managing Demand Risk in Tactical Supply Chain Planning for a Global Consumer Electronics Company, Production and Operations Management, 14(1), 69-79, http://dx.doi.org/10.1111/j.1937-5956.2005.tb00010.x.
  22. Manuj I., Mentzer J.T, 2008. Global supply chain risk management strategies, International Journal of Physical Distribution & Logistics Management, 38(3), 192-223, http://dx.doi.org/10.1108/09600030810866986.
  23. Merz M., Hiete M., Comes T., Schultmann F., 2013. Composite indicator model to assess natural disaster risks in industry on a spatial level, Journal of Risk Research, 16(9), 1077-1099, http://dx.doi.org/10.1080/13669877.2012.737820.
  24. Natarajarathinam M., Capar I., Narayanan A., 2009, Managing supply chains in times of crisis: a review of literature and insights, International Journal of Physical Distribution & Logistics Management, 39(7), 535-573, http://dx.doi.org/10.1108/09600030910996251.
  25. Peck H., 2005. Drivers of supply chain vulnerability: an integrated framework, International Journal of Physical Distribution & Logistics Management, 35(4), 210-232, http://dx.doi.org/10.1108/09600030510599904.
  26. Pereira C. R., Christopher M., Lago Da Silva A., 2014. Achieving supply chain resilience: the role of procurement, Supply Chain Management: An International Journal, 1(5/6), 626-642.
  27. Pfohl Hans-Christian, Philipp Gallus and David Thomas, 2011. Interpretive structural modeling of supply chain risks, International Journal of Physical Distribution & Logistics Management, 41(9), 839-859, http://dx.doi.org/10.1108/09600031111175816.
  28. Pricewaterhouse Coopers, 2009. 12th Annual Global CEO Survey.
  29. Sarker S., Engwall M., Trucco P., Feldmann A., 2016. Internal visibility of external supplier risks and the dynamics of risk management silos, IEEE Transactions on Engineering Management, 63(4), 451-461, http://dx.doi.org/10.1109/TEM.2016.2596144.
  30. Sheffi Y., 2001. Supply Chain Management under the threat of International Terrorism, International Journal of Logistics Management, 12(2), 1-11, http://dx.doi.org/10.1108/09574090110806262.
  31. Smith, D. and Fischbacher, M., 2009. The changing nature of risk and risk management: the challenge of borders, uncertainty and resilience, Risk Management, 11 (1), 1-12.
  32. Svensson G., 2000. A conceptual framework for the analysis of vulnerability in supply chains, International Journal of Physical Distribution & Logistics Management, 30(9), 731-750, http://dx.doi.org/10.1108/09600030010351444.
  33. Svensson G., 2004. Key areas, causes and contingency planning of corporate vulnerability in supply chains. A qualitative approach, International Journal of Physical Distribution & Logistics Management, 34 (9), 728-748, http://dx.doi.org/10.1108/09600030410567496.
  34. Tranfield D., Denyer D., P Smart., 2003. Towards a Methodology for Developing Evidence-informed Management Knowledge by Means of Systematic Review, British Journal of Management, 14(3), 207-222.
  35. Tukamuhabw B. R., Stevenson M., Busby J., Zorzini M., 2015. Supply chain resilience: definition, review and theoretical foundations for further study, International Journal of Production Research, 53(18), 5592-5623, http://dx.doi.org/10.1080/00207543.2015.1037934.
  36. Warburton S., 2017. German supplier body warns Brexit "poison" could trigger domino effect, Aroq - Just-Auto.com (Global News), 1/22/2017, 1-1.
  37. Wieland A., Wallenburg C. M., 2012. Dealing with supply chain risks. Linking risk management practices and strategies to performance, International Journal of Physical Distribution & Logistics Management, 42(10), 887-905, http://dx.doi.org/10.1108/09600031211281411.
  38. Zsidisin G.A., Panelli A., Upton R., 2000. Purchasing organization involvement in risk assessments, contingency plans, and risk management: an exploratory study, Supply Chain Management, 5(4), 187-198.
  39. Vakharia A. J., Yenipazarli A., 2009, Managing supply chain disruptions. Foundations and Trends® in Technology, Information and Operations Management, 2(4), 243-325, http://dx.doi.org/10.1561/0200000012.
  40. Venkatesh V.G., Rathi S., Patwa S., 2015. Analysis on supply chain risks in Indian apparel retail chains and proposal of risk prioritization model using interpretive structural modeling, Journal of Retailing and Consumer Services, 26, 153-167.
  41. Wieczerniak S., Cyplik P., Milczarek J., 2017. Root Cause Analysis Methods As A Tool Of Effective Change, Business Logistics in Modern Management, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, 17, 611-627.
Cited by
Show
ISSN
1895-2038
Language
eng
URI / DOI
http://dx.doi.org/10.17270/J.LOG.2018-302
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu