- Author
- Sołtysiak Marek (University of Silesia in Katowice, Sosnowiec, Poland), Rakoczy Michał
- Title
- An overview of the experimental research use of lysimeters
- Source
- Environmental & Socio-economic Studies, 2019, vol. 7, nr 2, s. 49-65, rys., bibliogr. 65 poz.
- Keyword
- Gleboznawstwo, Geologia, Woda, Metody pomiarowe
Soil science, Geology, Water, Measuring methods - Note
- summ.
- Abstract
- The lysimeter is most often defined as a box filled with soil with an intact structure for measuring the amount of infiltration and evapotranspiration in natural conditions. At the bottom of the device there is an outflow for atmospheric precipitation water infiltrating to a measuring container. Lysimeter studies are included in the group of dynamic leaching tests in which the leaching solution is added in a specified volume over a specific period of time. Lysimeter studies find applications in, amongst others, agrotechnics, hydrogeology and geochemistry. Lysimeter tests may vary in terms of the type of soil used (anthropogenic soil, natural soil), sample size, leaching solution, duration of the research and the purpose for conducting it. Lysimeter experiments provide more accurate results for leaching tests compared with static leaching tests. Unlike several-day tests, they should last for at least a year. There are about 2,500 lysimeters installed in nearly 200 stations around Europe. The vast majority of these (84%) are non-weighing lysimeters. There are a few challenges for lysimeter research mostly connected with the construction of the lysimeter, estimating leaching results and calibrating numerical transport models with data obtained from lysimeters. This review is devoted to the analysis of the principal types of lysimeters described in the literature within the context of their application. The aim of this study is to highlight the role of lysimeters in leaching studies.(original abstract)
- Full text
- Show
- Bibliography
- Augenstein M., Goeppert N., Goldscheider N. 2015. Characterizing soil water dynamics on steep hillslopes from long-term lysimeter data. Journal of Hydrology, 529: 795-804.
- Barkle G., Wöhlingb Th., Stengerb R., Mertensc J., Moorhead B., Wallb A., Clagueb J. 2011. Automated Equilibrium Tension Lysimeters for Measuring Water Fluxes through a Layered, Volcanic Vadose Profile in New Zealand. Vadose Zone Journal, 10, 2: 747-759.
- Borowiak D. 2016. Historia Stacji Limnologicznej w Borucinie. [in:] J. Wendt (ed.) 70 lat gdańskiego ośrodka geograficznego: teraźniejszość i przeszłość. Wydawnictwo Libron, Kraków: 313-329.
- Brown C.D., Hollis J.M., Bettinson R.J., Walker A. 2000. Leaching of pesticides and a bromide tracer through lysimeters from five contrasting soils. Pest Management Science, 56, 1: 83-93.
- Cepuder P., Supersberg H. 1991. Erfahrungen mit der Lysimeteranlage Groß-Enzersdorf. Bundesanstalt für alpenländische Landwirtschaft, BAL - Bericht.
- Chmielewski W., Dmuchowski W., Molski B. 1985. Trees in the city as sinks for air pollution - field study with the used of portable lysimeters conducted in Warsaw. [in:] I. Supuka (ed.) Creation and Protection of Verdure in the Urbanized Landscape. VEDA, Bratislava: 103-108.
- Dabrowska D., Kucharski R., Witkowski A. 2016. The representativity index of a simple monitoring network with regular theoretical shapes and its practical application for the existing groundwater monitoring network of the Tychy-Urbanowice landfills, Poland. Environmental Earth Sciences, 75: 749.
- Dabrowska D., Sołtysiak M., Cnota Ł. 2018a. Lysimeter experiments on municipal landfill waste - overview of current global research. 18th International Multidisciplinary Scientific GeoConference SGEM 2018, Albena: 495-500.
- Dabrowska D., Witkowski A., Sołtysiak M. 2018b. Application of pollution indices for the assessment of the negative impact of a municipal landfill on groundwater (Tychy, southern Poland). Geological Quarterly, 62, 3: 496-508.
- Dabrowska, D., Witkowski, A., Sołtysiak M. 2018c. Representativeness of the groundwater monitoring results in the context of its methodology. Environmental Earth Sciences, 77: 266.
- DVWK/Deutscher Verband für Wasserwirtschaft und Kulturbau e. V. (ed.). 1980. Empfehlungen zum Bau und Betrieb von Lysimetern. DVWK-Regeln zur Wasserwirtschaft, 114: 52.
- Elbl J., Plosek L., Kintl A., Prichystalova J., Zahora J., Friedel J. 2014. The Effect of Increased Doses of Compost on Leaching of Mineral Nitrogenmfrom Arable Land. Polish Journal of Environmental Studies, 23, 3: 697-703.
- Hoffmann M., Schwartengraber R., Wessolek G., Peters A. 2016. Comparison of simple rain gauge measurements with precision lysimeter data. Atmospheric Research, 174-175: 120-123.
- Howell T.A., Schneider A.D., Jensen M.E. 1991. History of Lysimeter Design and Use for Evapotranspiration Measurements. in: Lysimeters for Evapotranspiration and Environmental Measurements. Proceeding of International Symposium on Lysimetry. Honolulu, Hawaii, United States. American Society of Civil Engineers: 1-9
- Jancsó M., Szaloki T., Székely A., Szira F., Monostori I., Vágújfalvi A., Hoffmann B., Megyery Sz., Oncsik M.B. 2017. Characterization of 4 winter wheat cultivars with different Nitrogen Use Efficiency (NUE): Lysimeter study. 17. Gumpensteiner Lysimetertagung. Höhere Bundeslehrund Forschungsanstalt für Landwirtschaft, Raumberg-Gumpenstein: 103-106
- Kalembkiewicz J., Sitarz-Palczak E. 2015. Efficiency of leaching tests in the context of the influence of the fly ash on the environment. Journal of Ecological Engineering, 16: 67-80.
- Kim, A. 2002. Ccb leaching summary: survey of methods and results. Proceedings: Coal combustion by-products and western coal mines: A technical interactive forums: 179-195.
- Lanthaler Ch. 2004. Lysimeter Stations and Soil Hydrology Measuring Sites in Europe - Purpose, Equipment, Research Results, Future Developments. A diploma thesis, The Faculty of Natural Sciences at the Karl-Franzens-University Graz, not published.
- Larsbo M., Jarvis N. 2006. Information content of measurements from tracer microlysimeter experiments designed for parameter identification in dual-permeability models. Journal of Hydrology, 325, 1-4: 273-287.
- Maciejewski S., Maloszewski P., Stumpp C., Klotz D. 2006. Modelling of water flow through typical Bavarian soils (Germany) based on lysimeter experiments: 1. Estimation of hydraulic characteristics of the unsaturated zone. Hydrological Sciences Journal, 51, 2: 285-297.
- Macioszczyk T. 2002. Lysimeter [in:] J. Dowgiałło, A.S. Kleczkowski, T. Macioszczyk, A. Różkowski (eds.) Słownik hydrogeologiczny. Państwowy Instytut Geologiczny, Warszawa.
- Malek S., Martinson L., Sverdrup H. 2005. Modelling future soil chemistry at a highly polluted forest site at Istebna in Southern Poland using the "SAFE" model. Environmental Pollution, 137: 568-573.
- Maloszewski P., Maciejewski S., Stumpp C., Stichler W., Trimborn T., Klotz D. 2006. Modelling of water flow through typical Bavarian soils based on lysimeter experiments: 2 environmental deuterium transport. Hydrology Sciences Journal, 51: 298-313.
- Malterre F., Grebil G., Pierre J., Schiavon M. Trifluralin behaviour in soil: a microlysimeter study. Chemosphere, 34, 3: 447-454.
- Martins I., Faria R., Fabiano P., Dalri A., Oliverio C., Libardi L. 2017. Weighing lysimeters for greenhouse evapotraspiration measurements. IRRIGA, 22, 4: 715-722.
- Meissner R., Prasad M., Laing G., Rinklebe J. 2010. Lysimeter application for measuring the water and solute fluxes with high precision. Current Science, 99, 5: 601-607.
- Meissner R., Rupp H., Schubert M. 2000. Novel lysimeter techniques - a basis for the improved investigation of water, gas, and solute transport in soils. Journal of Plant Nutrition and Soil Science, 163, 6: 603-608.
- Muller J.C. 1996. Un point sur... trente ans de lysimétrie en France (1960-1990). Une technique, un outil pour l'étude de l'énvironnement. INRA, Comifer, Paris.
- Nourani V., Andalib G., Dąbrowska D. 2017a. Conjunction of wavelet transform and SOM-mutual information data pre-processing approach for AI-based Multi-Station nitrate modeling of watersheds. Journal of Hydrology, 548: 170-183.
- Nourani V., Mousavi S., Dabrowska D., Sadikoglu F. 2017b. Conjunction of radial basis function interpolator and artificial intelligence models for time-space modeling of contaminant transport in porous media. Journal of Hydrology, 548: 569-587.
- OECD, 2000. Guidance Document for the Performance of Outdoor Monolith Lysimeter Studies. OECD Series on Testing and Assessment, 22: 26.
- Pazdro Z., Kozerski B. 1990. Hydrogeologia ogólna. Wydawnictwa Geologiczne, Warszawa.
- Plošek L., Elbl J., Lošák T., Kužel T., Kintl A., Juřička D., Kynický J., Martensson A., Brtnický M. 2017. Leaching of mineral nitrogen in the soil influenced by addition of compost and N-mineral fertilizer. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 67, 7: 607-614
- Polap D. 2018. Human-machine interaction in intelligent technologies using the augmented reality. Information Technology and Control, 47, 4: 691-703
- Polap D., Winnicka A., Serwata K., Kesik K., Wozniak M. 2018. An Intelligent System for Monitoring Skin Diseases. Sensors, 18, 8: 2552.
- Reth S. 2016. Lysimeters - a Modern Tool to Investigate Transport Processes in Ecosystems. NAS International Workshop on Applying the Lysimeter Systems to Water and Nutrient Dynamics. At National Institute of Agricultural Sciences, Wanju, South Korea.
- Rey E., Weingartner R., Liniger H. 2014. Case study of a hillside lysimeter with realistic boundary conditions on slope and hillside in an inner alpine area, Switzerland. Geophysical Research Abstracts, 16, EGU2014-5065.
- Ruiz-Penalver L., Vera-Repullo J., Jimenez-Buendia M., Guzman I., Molina-Martinez J. 2015. Development of an innovative low cost weighing lysimeter for pottedplants: Application in lysimetric stations. Agricultural Water Management, 151: 103-113.
- Sarga-Gaczynska M. 2007. Dynamika generowania ładunków zanieczyszczeń na składowiskach odpadów górniczych i jej wpływ na środowisko wodne. Stanislaw Staszic Academy of Mining and Metallurgy, Phd thesis, not published.
- Schoen R., Gaudet J.P., Bariac T. 1999. Preferential flow and solute transport in a large lysimeter, undercontrolled boundary conditions. Journal of Hydrology, 215: 70-81.
- Schwaerzel K., Bohl H. 2003. An easily installable groundwater lysimeter to determine water balance components and hydraulic properties of peat soils. Hydrology and Earth System Sciences, 7, 1: 23-32.
- Slezak R., Krzystek L., Ledakowicz S. 2015. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions. Waste Management, 43: 293-299.
- Słupik J. 1973. Zróżnicowanie spływu powierzchniowego na fliszowych stokach górskich. Dokumentacja Geograficzna, 2, IG PAN, Warszawa.
- Sołtysiak M., Blachnik M., Dąbrowska D. 2016. Machine-learning methods in the water reservoirs classification. Environmental & Socio-economic Studies, 4, 2: 34-42.
- Sołtysiak M., Dąbrowska D. 2016. The smoothing methods used in assessing the influence of pollution sources on groundwater quality - a case study of metallurgical landfill in Lipówka (southern Poland). Environmental & Socio-economic Studies, 4, 4: 61-67.
- Soltysiak M., Dąbrowska D., Jałowiecki K., Nourani V., 2018. A multi-method approach to groundwater risk assessment: A case study of a landfill in southern Poland. Geological Quarterly, 62, 2: 361-374.
- Soltysiak M., Dąbrowska D., Żarski T., Żyła Ł., 2017. Lysimeter research of steel work slags from the Katowice Steelwork (Southern Poland). SGEM 2017, Albena, 1: 513-520.
- Stasko S., Chodacki M. 2014. Infiltracja do wód podziemnych na podstawie pomiarów lizymetrycznych w Górach Sowich. Przegląd Geologiczny, 62, 8: 414-419.
- Stumpp C., Maloszewski P., Stichler W., Maciejewski S. 2007. Quantification of the heterogeneity of the unsaturated zone based on environmental deuterium observed in lysimeter experiments. Hydrological Sciences Journal, 52, 4: 748-762.
- Stumpp C., Maloszewski P., Stichler W., Fank J. 2009. Environmental isotope (δ18O) and hydrological data to assess water flow in unsaturated soils planted with different crops: Case study lysimeter station "Wagna" (Austria). Journal of Hydrology, 369, 1-2: 198-208.
- Stumpp C., Stichler W., Kandolf M., Šimůnek J. 2012. Effects of land cover and fertilization method on water flow and solute transport in five lysimeters: A long-term study using stable water isotopes. Vadose Zone Journal, 11, 1: 14.
- Stumpp C., Malosewski P. 2010. Quantification of preferential flow and flow heterogeneities in an unsaturated soil planted with different crops using the environmental isotope δ18O. Journal of Hydrology, 394: 407-415.
- Stumpp C., Stichler W., Maloszewski P. 2009. Application of the environmental isotope δ18O to study water flow in unsaturated soils planted with different crops: Case study of a weighable lysimeter from the research field in Neuherberg, Germany. Journal of Hydrology, 368: 68-78.
- Sykut S. 1988. Dynamika procesu wymywania z gleb składników mineralnych w doświadczeniu lizymetrycznym (Phd thesis). IUNG Puławy, 59.
- Szczepanska J. 1987. Coal mine spoil tips as a source of the natural water environment pollution, Scientific Bulletins of Stanislaw Staszic Academy of Mining and Metallurgy, 1135.
- Tarka R. 1997. Zasilanie wód podziemnych w górskich masywach krystalicznych na przykładzie Masywu Śnieżnika w Sudetach. Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław.
- Ucles O., Villagarcia L., Canton Y., Domingo F. 2013. Microlysimeter station for long term non-rainfall water input and evaporation studies. Agricultural and Forest Meteorology, 182-183: 13-20.
- Valtenana M., Nsillanpaab N., Setalaaa H. 2017. A large-scale lysimeter study of stormwater biofiltration under coldclimatic condition. Ecological Engineering, 100: 89-98.
- Witczak S., Postawa A. 1993a. Ocena szybkości ługowania siarczków z płonych skał karbońskich deponowanych na składowiskach Górnośląskiego Zagłębia Węglowego na podstawie badań lizymetrycznych. Polska Akademia Nauk, Prace Mineralogiczne, 84.
- Witczak S., Postawa A. 1993b. The cinetics of sulphides oxidation in the coal mine spoils of the Upper Silesian Coal Basin. Pilot scale test. The 4th International Symposium on the Reclamation, Treatment and Utilization of Coal Mine Waste, Kraków.
- Zurek A. 2010. Wstępna ocena składowych naturalnego bilansu wodnego na podstawie obserwacji w lizymetrach. Przegląd Geologiczny, 58, 12: 1192-1197.
- Zurek A., Czop M. 2010. Modelowanie warunków przepływu i przekształceń składu chemicznego wód opadowych w trakcie procesu infiltracji, na przykładzie doświadczenia lizymetrycznego. Biuletyn Państwowego Instytutu Geologicznego, 442: 181-188.
- Zurek A., Moscicki W. 2017. Badanie strefy aeracji na stanowisku lizymetrycznym przy pomocy penetracyjnego profilowania oporności elektrycznej. Prace Geograficzne, 151: 121-132.
- http://lysimeter.info/
- http://lysimeter.at/
- Cited by
- ISSN
- 2354-0079
- Language
- eng
- URI / DOI
- https://doi.org/10.2478/environ-2019-0012