BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Chudziak Szymon (Szkoła Główna Handlowa w Warszawie)
Title
Modele wyboru konsumenta
Consumer Choice Models
Source
Zeszyty Naukowe Polskiego Towarzystwa Ekonomicznego w Zielonej Górze, 2023, nr 18, s. 5-22, rys., tab., bibliogr. 30 poz.
Scientific Journal of Polish Economic Society in Zielona Góra
Keyword
Konsument, Decyzje konsumenckie, Modele wyboru
Consumer, Consumer decision, Models of choice
Note
JEL Classification:A10, D01, D04
streszcz., summ.
Abstract
Eksperymenty i badania empiryczne w powtarzalny sposób wykazują niedostatki standardowego podejścia do modelowania wyborów konsumentów, opartego na teorii preferencji i optymalizacji międzyokresowej. W ekonometrycznych badaniach oraz alternatywnych metodach przedstawiania procesów decyzyjnych niemal zawsze zawarte jest założenie o istnieniu czynnika losowego wpływającego na ostateczny wybór. Niektóre formy takich zachowań są spójne z założeniem o optymalizacji użyteczności, ale mogą też mieć interpretację behawioralną. W tym artykule przedstawiono przegląd metod stosowanych do modelowania wyborów jednostek w celu przybliżenia tej tematyki. Ponieważ cała literatura jej dotycząca skupiała się na zastosowaniach różnych podejść do badań z użyciem danych empirycznych, stworzono ogólny szkielet modeli opartych na agentach konsumenckich podejmujących wiele decyzji. Stanowi to przyczynek do budowy wieloagentowych modeli zachowań konsumentów spójnych z praktyką badań ekonometrycznych. (abstrakt oryginalny)

Experiments and empirical research consistently demonstrate the shortcomings of the standard approach to modelling consumer choices, based on the theory of preferences and intertemporal optimization. In econometric studies and alternative methods of presenting decision-making processes, there is almost always an assumption of the existence of a random factor affecting the final choice. Some forms of such behaviour are consistent with the assumption of utility maximization, but they can also have a behavioural interpretation. This article presents an overview of methods used to model individual choices in order to approximate this topic. Since the entire literature on the subject has focused on the application of various approaches to research using empirical data, a general framework of models based on consumer agents making multiple decisions has been developed. This contributes to the construction of multi-agent models of consumer behaviour consistent with the practice of econometric research. Key words: Consumer decisions; market modeling; product choice. (original abstract)
Accessibility
The Library of University of Economics in Katowice
Full text
Show
Bibliography
Show
  1. Andreoni, J., & Miller, J. (2002). Giving According to GARP: An Experimental Test of the Consistency of Preferences for Altruism. Econometrica, 70(2), 737-753. https://doi.org/10.1111/1468-0262.00302
  2. Becker, F., Danaf, M., Song, X., Atasoy, B., & Ben-Akiva, M. (2018). Bayesian estimator for Logit Mixtures with inter- and intra-consumer heterogeneity. Transportation Research Part B: Methodological, 117, 1-17. https://doi.org/10.1016/j.trb.2018.06.007
  3. Behnood, A., Haghani, M., & Golafshani, E. M. (2022). Determinants of purchase likelihood for partially and fully automated vehicles: Insights from mixed logit model with heterogeneity in means and variances. Transportation Research Part A: Policy and Practice, 159, 119-139. https://doi.org/10.1016/j.tra.2022.03.017
  4. Birnbaum, M. H., & Schmidt, U. (2008). An experimental investigation of violations of transitivity in choice under uncertainty. Journal of Risk and Uncertainty, 37(1), 77-91. https://doi.org/10.1007/s11166-008-9043-z
  5. Daly, A., & Zachary, S. (1978). Improved Multiple Choice Models. In D. A. Hensher & M. Q. Dalvi (Eds.), Determinants of travel choice. Westmead: Saxon House.
  6. Danaf, M., Atasoy, B., & Ben-Akiva, M. (2020). Logit mixture with inter and intra-consumer heterogeneity and flexible mixing distributions. Journal of Choice Modelling, 35, 100188. https://doi.org/10.1016/j.jocm.2019.100188
  7. Debreu, G. (1960). Reviewed Work(s): Individual Choice Behavior: A Theoretical Analysis by R. Duncan Luce. American Economic Review, 50(1), 186-188
  8. Diaye, M.-A., & Urdanivia, M. W. (2009). Violation of the transitivity axiom may explain why, in empirical studies, a significant number of subjects violate GARP. Journal of Mathematical Psychology, 53(6), 586-592. https://doi.org/10.1016/j.jmp.2009.07.007
  9. Fang, D., Nayga, R. M., Snell, H. A., West, G. H., & Bazzani, C. (2019). Evaluating USA's New Nutrition and Supplement Facts Label: Evidence from a Non-hypothetical Choice Experiment. Journal of Consumer Policy, 42(4), 545-562. https://doi.org/10.1007/s10603-019- 09426-z
  10. Fontana, M., Iori, M., & Nava, C. R. (2019). Switching behavior in the Italian electricity retail market: Logistic and mixed effect Bayesian estimations of consumer choice. Energy Policy, 129, 339-351. https://doi.org/10.1016/j.enpol.2019.01.060
  11. Giansoldati, M., Rotaris, L., Scorrano, M., & Danielis, R. (2020). Does electric car knowledge influence car choice? Evidence from a hybrid choice model. Research in Transportation Economics, 80, 100826. https://doi.org/10.1016/j.retrec.2020.100826
  12. Grace, R. C. (1993). Violations of transitivity: Implications for a theory of contextual choice. Journal of the Experimental Analysis of Behavior, 60(1), 185-201. https://doi.org/10.1901/jeab.1993.60-185
  13. Grüne-Yanoff, T. (2012). Paradoxes of Rational Choice Theory. In S. Roeser, R. Hillerbrand, P. Sandin, & M. Peterson (Eds.), Handbook of Risk Theory (pp. 499-516). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-1433-5_19
  14. Guadalupe-Lanas, J., Cruz-Cárdenas, J., Artola-Jarrín, V., & Palacio-Fierro, A. (2020). Empirical evidence for intransitivity in consumer preferences. Heliyon, 6(3), e03459. https://doi.org/10.1016/j.heliyon.2020.e03459
  15. Gul, F., Natenzon, P., & Pesendorfer, W. (2014). Random Choice as Behavioral Optimization. Econometrica, 82(5), 1873-1912. https://doi.org/10.3982/ECTA10621
  16. Hey, J. D., & Orme, C. (1994). Investigating Generalizations of Expected Utility Theory Using Experimental Data. Econometrica, 62(6), 1291. https://doi.org/10.2307/2951750
  17. Hoffman, S. D., & Duncan, G. J. (1988). Multinomial and conditional logit discrete-choice models in demography. Demography, 25(3), 415-427. https://doi.org/10.2307/2061541
  18. Krueger, R., Bierlaire, M., Daziano, R. A., Rashidi, T. H., & Bansal, P. (2021). Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity. Journal of Choice Modelling, 41, 100323. https://doi.org/10.1016/j.jocm.2021.100323
  19. Loomes, G., Starmer, C., & Sugden, R. (1991). Observing Violations of Transitivity by Experimental Methods. Econometrica, 59(2), 425. https://doi.org/10.2307/2938263
  20. Luce, R. D. (1959). Individual choice behavior. Wiley
  21. Manzini, P., Mariotti, M., & Mittone, L. (2010). Choosing monetary sequences: Theory and experimental evidence. Theory and Decision, 69(3), 327-354. https://doi.org/10.1007/s11238- 010-9214-7
  22. McFadden, D. (1978). Modeling the Choice of Residential Location. In S. K. Lundqvist, F. Snickars, & J. W. Weibull (Eds.), Spatial Interaction Theory and Planning Models (pp. 75-96). Amsterdam.
  23. Nosrat, F., Cooper, W. L., & Wang, Z. (2021). Pricing for a product with network effects and mixed logit demand. Naval Research Logistics (NRL), 68(2), 159-182. https://doi.org/10.1002/nav.21943
  24. Sarrias, M. (2020). Individual-specific posterior distributions from Mixed Logit models: Properties, limitations and diagnostic checks. Journal of Choice Modelling, 36, 100224. https://doi.org/10.1016/j.jocm.2020.100224
  25. Sippel, R. (1997). An Experiment on the Pure Theory of Consumer's Behaviour. The Economic Journal, 107(444), 1431-1444. https://doi.org/10.1111/j.1468-0297.1997.tb00056.x
  26. Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34(4), 273- 286. https://doi.org/10.1037/h0070288
  27. Train, K. (2003). Discrete Choice Methods with Simulation. Cambridge University Press.
  28. Train, K. (2016). Mixed logit with a flexible mixing distribution. Journal of Choice Modelling, 19, 40-53. https://doi.org/10.1016/j.jocm.2016.07.004
  29. Williams, H. C. W. L. (1977). On the Formation of Travel Demand Models and Economic Evaluation Measures of User Benefit. Environment and Planning A: Economy and Space, 9(3), 285-344. https://doi.org/10.1068/a090285
  30. Zizzo, D. J., Stolarz-Fantino, S., Wen, J., & Fantino, E. (2000). A violation of the monotonicity axiom: Experimental evidence on the conjunction fallacy. Journal of Economic Behavior & Organization, 41(3), 263-276. https://doi.org/10.1016/S0167-2681(99)00076-1
Cited by
Show
ISSN
2391-7830
Language
pol
URI / DOI
http://dx.doi.org/10.26366/PTE.ZG.2023.233
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu