BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Wesołowski Jacek (Statistics Poland and Warsaw University of Technology)
Title
Multi-Domain Neyman-Tchuprov Optimal Allocation
Source
Statistics in Transition, 2019, vol. 20, nr 4, s. 1-12, bibliogr. s. 11-12
Keyword
Teoria optymalizacji, Optymalizacja wielokryterialna
Optimization theory, Multiple criteria optimization
Note
summ.
Abstract
The eigenproblem solution of the multi-domain efficient allocation is identified as a direct generalization of the classical Neyman-Tchuprov optimal allocation in stratified SRSWOR. This is achieved through analysis of eigenvalues and eigenvectors of a suitable population-based matrix D. Such a solution is an analytical companion to NLP approaches, which are often used in applications, see, e.g. Choudhry, Rao and Hidiroglou (2012). In this paper we are interested rather in the structure of the optimal allocation vector and relative variance than in such purely numerical tools (although the eigenproblem solution provides also numerical solutions, see, e.g. Wesołowski and Wieczorkowski (2017)). The domain-wise optimal allocation and the respective optimal variance of the estimator are determined by the unique direction (defined in terms of the positive eigenvector of matrix D) in the space I , where I is the number of domains in the population. (original abstract)
Accessibility
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
Full text
Show
Bibliography
Show
  1. CHOUDHRY, G. H., RAO, J. N. K., HIDIROGLOU, M. A., (2012).On sample allocation for efficient domain estimation, Survey Meth. 38(1) , pp. 23-29.
  2. FRIEDRICH, U., MUNNICH, R., DE VRIES, S., WAGNER, M., (2015). Fast integervalued algorithm for optimal allocations under constraints in stratified sampling, Comp. Statist. Data Anal., 92 , pp. 1-12.
  3. FRIEDRICH, U., MUNNICH, R., RUPP, M., (2018). Multivariate optimal allocation with box-constraints, Austrian J. Statist., 47 , pp. 33-52.
  4. GABLER, S., GANNINGER, M., M¨UNNICH, R., (2012). Optimal allocation of the sample size to strata under box constraints, Metrika, 75(2) , pp. 151-161.
  5. KATO, T., (1981), A Short Introduction to Perturbation Theory for Linear Operators, Springer, New York.
  6. KHAN, M. G. M., WESOŁOWSKI, J., (2019). Neyman-type sample allocation for domains-efficient estimation in multistage sampling. Adv. Stat. Anal., 103 , pp. 563-592.
  7. KOZAK, M., (2004). Method of multivariate sample allocation in agricultural surveys. Biom. Collq., 34 , pp. 241-250.
  8. KOZAK, M., ZIELI ´NSKI, A., (2005). Sample allocation between domains and strata. Int. J. Appl. Math. Stat, 3 , pp. 19-40.
  9. KOZAK, M., ZIELI ´NSKI, A., SINGH, S., (2008). Stratified two-stage sampling in domains: sample allocation between domains, strata and sample stages. Statist. Probab. Lett., 78 , pp. 970-974.
  10. LONGFORD, N. T., (2006). Sample size calculation for small-area estimation. Survey Meth., 32 , pp. 87-96.
  11. NIEMIRO, W., WESOŁOWSKI, J., (2001). Fixed precision allocation in two-stage sampling. Appl. Math., 28 , pp. 73-82.
  12. SARNDAL, C.-E., SWENSSON, B., WRETMAN, J., (1992). Model Assisted Survey Sampling, Springer, New York .
  13. VALLIANT, R., DEVER, J.A., KREUTER, F., (2013). Practical Tools for Designing and Weighting Sample Surveys, Springer.
  14. WESOŁOWSKI, J., WIECZORKOWSKI, R., (2017). An eigenproblem approach to optimal equal-precision sample allocation in subpopulations. Comm. Statist. Theory Meth., 46(5) , pp. 2212-2231.
  15. WRIGHT, T., 2017). Exact optimal sample allocation: More efficient than Neyman. Statist. Probab. Lett., 129 (, pp. 50-57.
Cited by
Show
ISSN
1234-7655
Language
eng
URI / DOI
http://dx.doi.org/10.21307/stattrans-2019-031
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu