BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Al-Jararha J. (Department of Statistics, Yarmouk University, Irbid, Jordan), Sulaiman Mazen (Department of Statistics, Yarmouk University, Irbid, Jordan)
Title
Horvitz-Thompson Estimator Based on Theauxiliary Variable
Source
Statistics in Transition, 2020, vol. 21, nr 1, s. 37-54, tab., bibliogr. s. 53
Keyword
Estymatory, Dobór próby badawczej
Estimators, Selection of test methods
Note
summ.
Abstract
In this paper, the Horvitz and Thompson (1952) estimator will be modified; so that, the modified estimators will use the availability of the auxiliary variable. Furthermore, the modified estimators are extended to be used in stratified sampling designs. Empirical studies are given for comparison purposes. (original abstract)
Accessibility
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
Full text
Show
Bibliography
Show
  1. AL-JARARHA, J., (2015). A Dual Problem of Calibration of Design Weights Based on Multi-Auxiliary Variables, Communications for Statistical Applications and Methods, 22(2), pp. 137-146.
  2. AL-YASEEN, A., (2014). Penalized Chi-Square Distance and the Dual Calibration for Estimating the Finite Population Total, Master Thesis. Statistics Deperatment. Yarmouk University, Jordan.
  3. DEVILLE, J.-C., SÄRNDAL, C.-E., (1992). Calibration Estimators in Survey Sampling, Journal of the American Statistical Association, 87, pp. 376-382.
  4. GODAMBE, V. P., (1955). A Unified Theory of Sampling from Finite Populations, J. Roy. Statist. Soc., B17, pp. 269-278.
  5. HORVITZ, D. G., THOMPSON, D. J., (1952). A generalization of sampling without replacement from a finite universe, Journal of the American Statistical Association, 47, pp. 663-685.
  6. LOHR, S. L. (2010). Sampling: Design and Analysis (2nd ed.), Boston: Brooks/Cole, Cengage Learning.
  7. NIDHI, B. V. S., SISODIA, S. SINGH, SINGH S. K., (2017). Calibration approach estimation of the mean in stratified sampling and stratified double sampling, Communications in Statistics - Theory and Methods, 46(10), pp. 4932-4942.
  8. OZGUL, N., (2018). New calibration estimator based on two auxiliary variables in stratified sampling. Communications in Statistics - Theory and Methods, doi = 10.1080/03610926.2018.1433852, pp. 1-12.
  9. SCHEAFFER, R. L., MENDENHALL, W., OTT, R. L. (2006). Elementary Survey Sampling (6th ed.), Belmont, CA: Duxbury.
  10. SINGH, S., (2013). A Dual Problem of Calibration of Design Weights, Statistics: A Journal of Theoretical and Applied Statistics, 47(3), pp. 566-574.
  11. STEARNS, M., S. SINGH, (2008). On the estimation of the general parameter, Computational Statistics Data Analysis, 52, pp. 4253-4271.
  12. SUGDEN, R., SMITH T., (2002). Exact linear unbiased estimation in survey sampling, Journal of Statistical Planning and Inference, 102 (1), pp. 25-38.
Cited by
Show
ISSN
1234-7655
Language
eng
URI / DOI
http://dx.doi.org/10.21307/stattrans-2020-003
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu