BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Nyulásziová Miroslava (Technical University of Košice, Slovak Republic), Paľová Dana (Technical University of Košice, Slovakia)
Title
Implementing a Decision Support System in the Transport Process Management of a Small Slovak Transport Company
Source
Journal of Entrepreneurship, Management and Innovation (JEMI), 2020, vol. 16, nr 1, s. 75-105, rys., tab., bibliogr. s. 99-104
Issue title
Business Process Management: Current Applications and the Challenges of Adoption
Keyword
Systemy wspomagania decyzji, Logistyka transportu, Analiza danych, Zarządzanie przedsiębiorstwem
Decision Support Systems (DSS), Transport logistics, Data analysis, Enterprise management
Note
JEL Classification: M15, L84, O31
streszcz., summ.
Abstract
Bezsporne jest, że ciągły rozwój technologii cyfrowych wpływa na otoczenie biznesowe. Korzystanie z technologii informatycznych oznacza łatwiejszy dostęp do ogromnej ilości informacji biznesowych, co trudno jest uwzględnić w codziennym podejmowaniu decyzji. Tradycyjne metody przetwarzania danych w zarządzaniu przedsiębiorstwem stają się nieodpowiednie. Podejście do zarządzania procesami biznesowymi i analiza danych biznesowych to narzędzia, które można wykorzystać do optymalizacji procesów w firmie i do zebrania cennych informacji, które mogą dostarczyć różnorodnych materiałów decyzyjnych do zarządzania firmą. Artykuł dotyczy analizy, modelowania i optymalizacji procesu transportu, a także projektowania systemu wspomagania decyzji w tym procesie w małej firmie transportowej. Badania koncentrują się na opracowaniu innowacyjnego systemu wspomagania decyzji opartego na analizie danych firmy w celu usprawnienia zarządzania procesem transportu. (abstrakt oryginalny)

It is indisputable that the continuous development of digital technologies influences the business environment. Using information technologies means easier access to a huge amount of business information, which is hard to include in day-to-day decision-making. Traditional data processing methods in business management become inadequate. So, business process management approaches and business data analysis are the tools that could be utilized to optimize processes in a company and to harvest valuable information that can provide a variety of decision-making material for company management. This article deals with the analysis, modeling, and optimization of the transport process, as well as the design of a system for decision support in this process within a small transport company. The research is focused on the development of an innovative decision support system based on a company's data analysis in order to improve the management of the transport service process. (original abstract)
Full text
Show
Bibliography
Show
  1. Aalst, W. M. P. (2013). Business process management: A comprehensive survey. Retrieved from http://downloads.hindawi.com/journals/isrn.software.engineering/2013/507984.pdf https://doi.org/10.1155/2013/507984.
  2. Aalst, W. M. P., Adriansyah, A., Medeiros, A. K. A., & Arcieri, F. (2011). Process mining manifesto. Retrieved from https://link.springer.com/content/pdf/10.1007/978-3-642-28108-2_19.pdf
  3. Asef-Vaziri, A., Laporte, G., & Ortiz, R. (2007). Exact and heuristic procedures for the material handling circular flow path design problem. European Journal of Operational Research, 176(2), 707-726. http://dx.doi.org/10.1016/j.ejor.2005.08.023
  4. Bardi, E. J., Raghunathan T. S., & Bagchi P. K. (1994). Logistics information systems: The strategic role of top management. Journal of Business Logistics, 15(1), 71-85.
  5. Berglund, M., Laarhoven, P., & Sharman, G. (2006). Third-party logistics: Is there a future. International Journal of Logistics Management, 59-70. http://dx.doi.org/10.5923/j.logistics.20140301.03
  6. Boonprasurt, P., & Nanthavanij, S. (2012). Optimal fleet size, delivery routes, and workforce assignments for the vehicle routing problem with manual materials handling. International Journal of Industrial Engineering: Theory, Applications and Practice, 19(6), 252-263.
  7. Congna, Q., & Huifeng, Z. (2009). Study on application of data mining technology to modern logistics management decision. International Forum on Information technology and Applications (pp. 433-436). http://dx.doi.org/10.1109/IFITA.2009.93
  8. Daoping, W., & Xiaojing, X. (2010). Analysis and design of the logistics information system based on data mining. Intelligent computation Technology and Automation (pp. 635-638). http://dx.doi.org/10.1109/ICICTA.2010.133
  9. Davenport, T. H., & Short J. E. (1990). The new industrial engineering: Information technology and business process redesign. Sloan Management Review, 31(4), 11-27.
  10. Dumas, M., Rosa, M., Mendling, J., & Reijers, H. A. (2013). Introduction to business process management. Fundamentals of Business Process Management, 5(4), 1-31. http://dx.doi.org/10.1007/978-3-642-33143-5_1
  11. Fanti, M. P. (2015). A simulation based decision support system for logistics management. Journal of Computational Science, 10, 86-96. http://dx.doi.org/10.1016/j.jocs.2014.10.003
  12. Fayyad, U.M. (1996). Advances in Knowledge Discovery and Data Mining. Cambridge MA: AAAI Press/MIT Press.
  13. Feelders, A., Daniels, H., & Holsheimer, M. (2000). Methodological and practical aspects of data mining. Information & Management, 37(5), 271 -281. http://dx.doi.org/10.1016/S0378-7206(99)00051-8
  14. Ferreira, J., Almeida, J., & Silvia, A. (2015). The impact of driving styles on fuel consumption: A data warehouse and data mining based discovery process. Transactions on Intelligent Transportation Systems, 16(5), 2653-2662. http://dx.doi.org/10.1109/TITS.2015.2414663
  15. Gabryelczyk, R., & Roztocki, N. (2018). Business process management success framework for transition economies. Information Systems Management, 35 (3), 234-253. http://dx.doi.org/10.1080/10580530.2018.1477299
  16. Gartner (2018). Business Process Management (BPM). Retrieved from https://www.gartner.com/it-glossary/business-process-management- bpm
  17. Giraldo, J., Jiménez, J., & Tabares, M. (2015). Integrating business process management and data mining for organizational decision making. Research in Computing Science, 100, 89-102.
  18. Goel, A., & Irnich, S. (2016). An exact method for vehicle routing and truck driver scheduling problems. Transportation Science, 51(2), 1-18. http://dx.doi.org/10.1287/trsc.2016.0678
  19. Golden, B., Raghavan, S., & Wasil, E. (2008). The vehicle routing problem: Latest advances and new challenges. Operations Research/Computer Science Interfaces Series. Retrieved from https://www.springer.com/series/6375
  20. Hu, Z. H., & Sheng Z. H. (2014). A decision support system for public logistics information service management and optimization. Decision Support Systems, 59, 219-229. http://dx.doi.org/10.1016/j.dss.2013.12.001
  21. Huai, T., Shah. S. D., & Miller, J. W. (2006). Analysis of heavy-duty diesel truck activity and emissions data. Atmospheric Environment, 40, 2333-2344. http://dx.doi.org/10.1016/j.atmosenv.2005.12.006
  22. Huisman, D., & Wagelmans, A. (2006). A solution approach for dynamic vehicle and crew scheduling. European Journal of Operational Research, 172(2), 453-471. http://dx.doi.org/10.1016/j.ejor.2004.10.009
  23. Chen, S. (2013). A crew scheduling with Chinese meal break rules. Journal of Transportation Systems Engineering and Information Technology, 13(2), 90-95. http://dx.doi.org/10.1016/S1570-6672(13) 60105-1
  24. Chow, H.K.H., Choy, K. L., & Lee W. B. (2007). A dynamic logistics process knowledge- based system - An RFID multi-agent approach. Knowledge Based Systems, 20(4), 357-372. https://doi.org/10.1016/j.knosys.2006.08.004
  25. Chung, H. M., & Gray, P. (1999). Special section: Data mining. Journal of Management Information Systems, 16(1), 11-16. http://dx.doi.org/10.1080/07421222.1999.11518231
  26. Igbaria, M., Sprague, R., Basnet, C., & Foulds, L. (1996). The impact and benefits of a DSS: The case of Fleetmanager. Information and Management, 31(1996), 215-225. http://dx.doi.org/10.1016/S0378-7206(96)01078-6
  27. Kang, B., Kim, D., & Kang, S. H. (2012). Periodic performance prediction for real-time business process monitoring. Industrial Management and Data Systems, 112, 4-23. http://dx.doi.org/10.1108/02635571211193617
  28. Kantardzic, M. (2011). Data mining, concepts, models, methods, and algorithms, 2nd edition, London: Wiley-IEEE Press.
  29. Khabbazi, M. R., Hasan, M. K., & Sulaiman, R. (2013). Business process modelling in production logistics: Complementary use of BPMN and UML. Middle East Journal of Scientific Research, 15(4), 516-529. http://dx.doi.org/10.5829/idosi.mejsr.2013.15.4.2280
  30. Khabbazi, M. R., Ismail, M. Y., Ismail, N., Mousavi, S. A., & Mirsanes, H. S. (2011). Lotbase traceability requirements and functionality evaluation for small to medium-sized enterprises. International Journal of Production Research, 49(3), 731-746. http://dx.doi.org/10.1080/00207540903530810
  31. Kurgan, L., & Musilek, P. (2006). A survey of knowledge discovery and data mining process models. The Knowledge Engineering Review, 21(1), 1-24. http://dx.doi.org/10.1017/S0269888906000737
  32. Lai, W.T. (2015). The effects of eco-driving motivation, knowledge and reward intervention on fuel efficiency. Transportation Research Part D: Transport and Environment, 34, 155-160. http://dx.doi.org/10.1016/j.trd.2014.10.003
  33. Langley Jr., C. J. (1985). Information-based decision making in logistics management. International Journal of Physical Distribution & Materials Management, 15(7), 41-55. http://dx.doi.org/10.1108/eb014623
  34. Laurent, B., & Hao, J. (2007). Simultaneous vehicle and drivers scheduling: A case study in a limousine rental company. Computers & Industrial Engineering, 53(3), 542-558. http://dx.doi.org/10.1016/j.cie.2007.05.011
  35. Laxhammar, R., & Gascón-Vallbona, A. (2015). Vehicle models for fuel consumption. EC FP6 project COMPANION deliverable D4.3. Retrieved from https://pdfs.semanticscholar.org/b350/cff0d479e4bec2de86502c8d12a639e1497c.pdf
  36. Lee, D., & Park, J. (2008). RFID-based traceability in the supply chain. Industrial Management and Data Systems, 108(6), 713-725 http://dx.doi.org/10.1108/02635570810883978
  37. Liu, D., & Guangsheng, Z. (2008). Application of data mining technology in modern agricultural logistics management decision. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.456.747&rep=rep1&type=pdf
  38. Ma, H., Xie, H., Huang, D., & Xiong, S. (2015). Effects of driving style on the fuel consumption of city buses under different road conditions and vehicle masses. Transportation Research Part D: Transport and Environment, 41, 205-216. http://dx.doi.org/10.1016/j.trd.2015.10.003
  39. Moreno, M. D. R., Camacho, D., & Barrero D. F. (2010). A decision support system for logistics operations. In Soft Computing Models in Industrial and Environmental Applications (pp. 103-110). Berlin: Springer. http://dx.doi.org/10.1007/978-3- 642-13161-5_14
  40. Moynihan, G. P., Raj P. S., Sterling, J. U., & Nichols, W. G. (1995). Decision support system for strategic logistics planning. Computer in Industry, 26(1), 75-84. http://dx.doi.org/10.1016/0166-3615(95)80007-7
  41. Muchová, M., Paralič, J., & Nemčík, M. (2017). Using predictive data mining models for data analysis in a logistics company. Information Systems Architecture and Technology, 26, 161-170. http://dx.doi.org/10.1007/978-3-319-67220-5_15
  42. Oates, B. J. (2006). Researching Information Systems and Computing. London: Sage Publications.
  43. Paul, A., & Saravanan, V. (2011). Data mining analytics to minimize logistics cost. International Journal of Advances in Science and Technology, 2(3), 433-436.
  44. Peng, W., Li., M., & Yuanyuan, X. (2009). Research on logistics oriented spatial data mining techniques. In 2009 International Conference on Management and Service Science. Retrieved from https://ieeexplore.ieee.org/abstract/document/5302896 http://dx.doi.org/ 10.1109/ICMSS.2009.5302896
  45. Perrey, J., Spillecke, D., & Umblijs, A. (2013). Smart analytics: How marketing driver short-term and long-term growth. In D. Court, J. Perrey, T. McGuire, T. Gordon, & D. Spillecke (Eds.), Big Data, Analytics, and the Future of Marketing & Sales (pp. 1-40). New York: McKinsey & Company.
  46. Pighin, M. (2016). Logistic and production computer systems in small- medium enterprises. In 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 1168-1172). IEEE: Opatija, Croatia. http://dx.doi.org/10.1109/MIPRO.2016.7522316
  47. Portugal, R., Lourenço, H.R., & Paixão, J.P. (2009). Driver scheduling problem modelling. Public Transport, 1(2), 103-120. http://dx.doi.org/10.1007/s12469-008-0007-0
  48. Pour, J., Maryška, M., & Novotný, O. (2012). Business intelligence v podnikové praxi. Professional Publishing, 276 (in Czech).
  49. Rish, I. (2001). An empirical study of the naive bayes classifier. Technical report, IBM Research Division. Retrieved from https://www.cc.gatech.edu/~isbell/reading/papers/Rish.pdf
  50. Rosemann, M., & Brocke, J. (2015). The six core elements of business process management. In International Handbook on Information Systems (pp. 105-122) Berlin, Cham: Springer. http://dx.doi.org/10.1007/978-3-642-45100- 3_5
  51. Sauter, V. L. (2011). Decision Support Systems for Business Intelligence. London: Wiley.
  52. Strömberg, H.K., & Karlsson, I.C.M. (2013). Comparative effects of eco-driving initiatives aimed at urban bus drivers - results from a field trial. Transportation Research Part D: Transport and Environment, 22, 28-33. http://dx.doi.org/10.1016/j.trd.2013.02.011
  53. Swenson, K. D., & Mark von Rosing. (2015). The Complete Business Process Handbook. Waltham, USA: Morgan Kaufmann. http://dx.doi.org/10.1016/B978-0-12-799959-3.00004-5
  54. Sprenger, R. & Mönch, L. (2014). A decision support system for cooperative transportation planning: Design, implementation and performance assessment. Expert Systems with Applications, 41(2014), 5125-5138. http://dx.doi.org/10.1016/j.eswa.2014.02.032
  55. Šuc, D., & Bratko, I. (2001). Induction of qualitative trees.
  56. Šuc, D., & Bratko, I. (2003). Qualitative reverse engineering. Retrieved from https://www.researchgate.net/publication/221344771_Qualitative_reverse_engineering
  57. Terek, M. (2010). Hĺbková analýza údajov. Retrieved from https://www.portalvs.sk/sk/prehlad- projektov/kega/3027
  58. Vogetseder, G. (2008). Functional analysis of real world truck fuel consumption data. Retrieved from http://www.diva- portal.org/smash/get/diva2:238366/FULLTEXT01.pdf
  59. Vom Brocke, J. V., & Mendling, J. (Eds.) (2018). Business Process Management Cases. Digital Innovation and Business Transformation in Practice. Cham: Springer. http://dx.doi.org/10.1007/978-3-319-58307-5
  60. Vukšić, V., Bach, V. B. M., & Popovič, A. (2013). Supporting performance management with business process management and business intelligence: A case analysis of integration and orchestration. International Journal of Information Management, 4(33), 613-619. https://doi.org/10.1016/j.ijinfomgt.2013.03.008
  61. Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics and big data: A revolution that will transform supply chain design and management. Journal of Business Logistics, 34(2), 77-84. http://dx.doi.org/10.1111/jbl.12010
  62. Wegener, D., & Rüping, S. (2010). On integrating data mining into business processes. Business information systems. Lecture Notes in Business Information Processing, 47, 183-194. http://dx.doi.org/10.1007/978-3-642-12814-1_16
  63. Zhang Y., Zhang G., & Du. W. (2015) An optimization method for shopfloor material handling based on real-time and multi- source manufacturing data. International Journal of Production Economics, 165, 282-292. http://dx.doi.org/10.1016/j.ijpe.2014.12.029
Cited by
Show
ISSN
2299-7075
Language
eng
URI / DOI
https://doi.org/10.7341/20201613
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu