- Author
- Nyulásziová Miroslava (Technical University of Košice, Slovak Republic), Paľová Dana (Technical University of Košice, Slovakia)
- Title
- Implementing a Decision Support System in the Transport Process Management of a Small Slovak Transport Company
- Source
- Journal of Entrepreneurship, Management and Innovation (JEMI), 2020, vol. 16, nr 1, s. 75-105, rys., tab., bibliogr. s. 99-104
- Issue title
- Business Process Management: Current Applications and the Challenges of Adoption
- Keyword
- Systemy wspomagania decyzji, Logistyka transportu, Analiza danych, Zarządzanie przedsiębiorstwem
Decision Support Systems (DSS), Transport logistics, Data analysis, Enterprise management - Note
- JEL Classification: M15, L84, O31
streszcz., summ. - Abstract
- Bezsporne jest, że ciągły rozwój technologii cyfrowych wpływa na otoczenie biznesowe. Korzystanie z technologii informatycznych oznacza łatwiejszy dostęp do ogromnej ilości informacji biznesowych, co trudno jest uwzględnić w codziennym podejmowaniu decyzji. Tradycyjne metody przetwarzania danych w zarządzaniu przedsiębiorstwem stają się nieodpowiednie. Podejście do zarządzania procesami biznesowymi i analiza danych biznesowych to narzędzia, które można wykorzystać do optymalizacji procesów w firmie i do zebrania cennych informacji, które mogą dostarczyć różnorodnych materiałów decyzyjnych do zarządzania firmą. Artykuł dotyczy analizy, modelowania i optymalizacji procesu transportu, a także projektowania systemu wspomagania decyzji w tym procesie w małej firmie transportowej. Badania koncentrują się na opracowaniu innowacyjnego systemu wspomagania decyzji opartego na analizie danych firmy w celu usprawnienia zarządzania procesem transportu. (abstrakt oryginalny)
It is indisputable that the continuous development of digital technologies influences the business environment. Using information technologies means easier access to a huge amount of business information, which is hard to include in day-to-day decision-making. Traditional data processing methods in business management become inadequate. So, business process management approaches and business data analysis are the tools that could be utilized to optimize processes in a company and to harvest valuable information that can provide a variety of decision-making material for company management. This article deals with the analysis, modeling, and optimization of the transport process, as well as the design of a system for decision support in this process within a small transport company. The research is focused on the development of an innovative decision support system based on a company's data analysis in order to improve the management of the transport service process. (original abstract) - Full text
- Show
- Bibliography
- Aalst, W. M. P. (2013). Business process management: A comprehensive survey. Retrieved from http://downloads.hindawi.com/journals/isrn.software.engineering/2013/507984.pdf https://doi.org/10.1155/2013/507984.
- Aalst, W. M. P., Adriansyah, A., Medeiros, A. K. A., & Arcieri, F. (2011). Process mining manifesto. Retrieved from https://link.springer.com/content/pdf/10.1007/978-3-642-28108-2_19.pdf
- Asef-Vaziri, A., Laporte, G., & Ortiz, R. (2007). Exact and heuristic procedures for the material handling circular flow path design problem. European Journal of Operational Research, 176(2), 707-726. http://dx.doi.org/10.1016/j.ejor.2005.08.023
- Bardi, E. J., Raghunathan T. S., & Bagchi P. K. (1994). Logistics information systems: The strategic role of top management. Journal of Business Logistics, 15(1), 71-85.
- Berglund, M., Laarhoven, P., & Sharman, G. (2006). Third-party logistics: Is there a future. International Journal of Logistics Management, 59-70. http://dx.doi.org/10.5923/j.logistics.20140301.03
- Boonprasurt, P., & Nanthavanij, S. (2012). Optimal fleet size, delivery routes, and workforce assignments for the vehicle routing problem with manual materials handling. International Journal of Industrial Engineering: Theory, Applications and Practice, 19(6), 252-263.
- Congna, Q., & Huifeng, Z. (2009). Study on application of data mining technology to modern logistics management decision. International Forum on Information technology and Applications (pp. 433-436). http://dx.doi.org/10.1109/IFITA.2009.93
- Daoping, W., & Xiaojing, X. (2010). Analysis and design of the logistics information system based on data mining. Intelligent computation Technology and Automation (pp. 635-638). http://dx.doi.org/10.1109/ICICTA.2010.133
- Davenport, T. H., & Short J. E. (1990). The new industrial engineering: Information technology and business process redesign. Sloan Management Review, 31(4), 11-27.
- Dumas, M., Rosa, M., Mendling, J., & Reijers, H. A. (2013). Introduction to business process management. Fundamentals of Business Process Management, 5(4), 1-31. http://dx.doi.org/10.1007/978-3-642-33143-5_1
- Fanti, M. P. (2015). A simulation based decision support system for logistics management. Journal of Computational Science, 10, 86-96. http://dx.doi.org/10.1016/j.jocs.2014.10.003
- Fayyad, U.M. (1996). Advances in Knowledge Discovery and Data Mining. Cambridge MA: AAAI Press/MIT Press.
- Feelders, A., Daniels, H., & Holsheimer, M. (2000). Methodological and practical aspects of data mining. Information & Management, 37(5), 271 -281. http://dx.doi.org/10.1016/S0378-7206(99)00051-8
- Ferreira, J., Almeida, J., & Silvia, A. (2015). The impact of driving styles on fuel consumption: A data warehouse and data mining based discovery process. Transactions on Intelligent Transportation Systems, 16(5), 2653-2662. http://dx.doi.org/10.1109/TITS.2015.2414663
- Gabryelczyk, R., & Roztocki, N. (2018). Business process management success framework for transition economies. Information Systems Management, 35 (3), 234-253. http://dx.doi.org/10.1080/10580530.2018.1477299
- Gartner (2018). Business Process Management (BPM). Retrieved from https://www.gartner.com/it-glossary/business-process-management- bpm
- Giraldo, J., Jiménez, J., & Tabares, M. (2015). Integrating business process management and data mining for organizational decision making. Research in Computing Science, 100, 89-102.
- Goel, A., & Irnich, S. (2016). An exact method for vehicle routing and truck driver scheduling problems. Transportation Science, 51(2), 1-18. http://dx.doi.org/10.1287/trsc.2016.0678
- Golden, B., Raghavan, S., & Wasil, E. (2008). The vehicle routing problem: Latest advances and new challenges. Operations Research/Computer Science Interfaces Series. Retrieved from https://www.springer.com/series/6375
- Hu, Z. H., & Sheng Z. H. (2014). A decision support system for public logistics information service management and optimization. Decision Support Systems, 59, 219-229. http://dx.doi.org/10.1016/j.dss.2013.12.001
- Huai, T., Shah. S. D., & Miller, J. W. (2006). Analysis of heavy-duty diesel truck activity and emissions data. Atmospheric Environment, 40, 2333-2344. http://dx.doi.org/10.1016/j.atmosenv.2005.12.006
- Huisman, D., & Wagelmans, A. (2006). A solution approach for dynamic vehicle and crew scheduling. European Journal of Operational Research, 172(2), 453-471. http://dx.doi.org/10.1016/j.ejor.2004.10.009
- Chen, S. (2013). A crew scheduling with Chinese meal break rules. Journal of Transportation Systems Engineering and Information Technology, 13(2), 90-95. http://dx.doi.org/10.1016/S1570-6672(13) 60105-1
- Chow, H.K.H., Choy, K. L., & Lee W. B. (2007). A dynamic logistics process knowledge- based system - An RFID multi-agent approach. Knowledge Based Systems, 20(4), 357-372. https://doi.org/10.1016/j.knosys.2006.08.004
- Chung, H. M., & Gray, P. (1999). Special section: Data mining. Journal of Management Information Systems, 16(1), 11-16. http://dx.doi.org/10.1080/07421222.1999.11518231
- Igbaria, M., Sprague, R., Basnet, C., & Foulds, L. (1996). The impact and benefits of a DSS: The case of Fleetmanager. Information and Management, 31(1996), 215-225. http://dx.doi.org/10.1016/S0378-7206(96)01078-6
- Kang, B., Kim, D., & Kang, S. H. (2012). Periodic performance prediction for real-time business process monitoring. Industrial Management and Data Systems, 112, 4-23. http://dx.doi.org/10.1108/02635571211193617
- Kantardzic, M. (2011). Data mining, concepts, models, methods, and algorithms, 2nd edition, London: Wiley-IEEE Press.
- Khabbazi, M. R., Hasan, M. K., & Sulaiman, R. (2013). Business process modelling in production logistics: Complementary use of BPMN and UML. Middle East Journal of Scientific Research, 15(4), 516-529. http://dx.doi.org/10.5829/idosi.mejsr.2013.15.4.2280
- Khabbazi, M. R., Ismail, M. Y., Ismail, N., Mousavi, S. A., & Mirsanes, H. S. (2011). Lotbase traceability requirements and functionality evaluation for small to medium-sized enterprises. International Journal of Production Research, 49(3), 731-746. http://dx.doi.org/10.1080/00207540903530810
- Kurgan, L., & Musilek, P. (2006). A survey of knowledge discovery and data mining process models. The Knowledge Engineering Review, 21(1), 1-24. http://dx.doi.org/10.1017/S0269888906000737
- Lai, W.T. (2015). The effects of eco-driving motivation, knowledge and reward intervention on fuel efficiency. Transportation Research Part D: Transport and Environment, 34, 155-160. http://dx.doi.org/10.1016/j.trd.2014.10.003
- Langley Jr., C. J. (1985). Information-based decision making in logistics management. International Journal of Physical Distribution & Materials Management, 15(7), 41-55. http://dx.doi.org/10.1108/eb014623
- Laurent, B., & Hao, J. (2007). Simultaneous vehicle and drivers scheduling: A case study in a limousine rental company. Computers & Industrial Engineering, 53(3), 542-558. http://dx.doi.org/10.1016/j.cie.2007.05.011
- Laxhammar, R., & Gascón-Vallbona, A. (2015). Vehicle models for fuel consumption. EC FP6 project COMPANION deliverable D4.3. Retrieved from https://pdfs.semanticscholar.org/b350/cff0d479e4bec2de86502c8d12a639e1497c.pdf
- Lee, D., & Park, J. (2008). RFID-based traceability in the supply chain. Industrial Management and Data Systems, 108(6), 713-725 http://dx.doi.org/10.1108/02635570810883978
- Liu, D., & Guangsheng, Z. (2008). Application of data mining technology in modern agricultural logistics management decision. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.456.747&rep=rep1&type=pdf
- Ma, H., Xie, H., Huang, D., & Xiong, S. (2015). Effects of driving style on the fuel consumption of city buses under different road conditions and vehicle masses. Transportation Research Part D: Transport and Environment, 41, 205-216. http://dx.doi.org/10.1016/j.trd.2015.10.003
- Moreno, M. D. R., Camacho, D., & Barrero D. F. (2010). A decision support system for logistics operations. In Soft Computing Models in Industrial and Environmental Applications (pp. 103-110). Berlin: Springer. http://dx.doi.org/10.1007/978-3- 642-13161-5_14
- Moynihan, G. P., Raj P. S., Sterling, J. U., & Nichols, W. G. (1995). Decision support system for strategic logistics planning. Computer in Industry, 26(1), 75-84. http://dx.doi.org/10.1016/0166-3615(95)80007-7
- Muchová, M., Paralič, J., & Nemčík, M. (2017). Using predictive data mining models for data analysis in a logistics company. Information Systems Architecture and Technology, 26, 161-170. http://dx.doi.org/10.1007/978-3-319-67220-5_15
- Oates, B. J. (2006). Researching Information Systems and Computing. London: Sage Publications.
- Paul, A., & Saravanan, V. (2011). Data mining analytics to minimize logistics cost. International Journal of Advances in Science and Technology, 2(3), 433-436.
- Peng, W., Li., M., & Yuanyuan, X. (2009). Research on logistics oriented spatial data mining techniques. In 2009 International Conference on Management and Service Science. Retrieved from https://ieeexplore.ieee.org/abstract/document/5302896 http://dx.doi.org/ 10.1109/ICMSS.2009.5302896
- Perrey, J., Spillecke, D., & Umblijs, A. (2013). Smart analytics: How marketing driver short-term and long-term growth. In D. Court, J. Perrey, T. McGuire, T. Gordon, & D. Spillecke (Eds.), Big Data, Analytics, and the Future of Marketing & Sales (pp. 1-40). New York: McKinsey & Company.
- Pighin, M. (2016). Logistic and production computer systems in small- medium enterprises. In 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 1168-1172). IEEE: Opatija, Croatia. http://dx.doi.org/10.1109/MIPRO.2016.7522316
- Portugal, R., Lourenço, H.R., & Paixão, J.P. (2009). Driver scheduling problem modelling. Public Transport, 1(2), 103-120. http://dx.doi.org/10.1007/s12469-008-0007-0
- Pour, J., Maryška, M., & Novotný, O. (2012). Business intelligence v podnikové praxi. Professional Publishing, 276 (in Czech).
- Rish, I. (2001). An empirical study of the naive bayes classifier. Technical report, IBM Research Division. Retrieved from https://www.cc.gatech.edu/~isbell/reading/papers/Rish.pdf
- Rosemann, M., & Brocke, J. (2015). The six core elements of business process management. In International Handbook on Information Systems (pp. 105-122) Berlin, Cham: Springer. http://dx.doi.org/10.1007/978-3-642-45100- 3_5
- Sauter, V. L. (2011). Decision Support Systems for Business Intelligence. London: Wiley.
- Strömberg, H.K., & Karlsson, I.C.M. (2013). Comparative effects of eco-driving initiatives aimed at urban bus drivers - results from a field trial. Transportation Research Part D: Transport and Environment, 22, 28-33. http://dx.doi.org/10.1016/j.trd.2013.02.011
- Swenson, K. D., & Mark von Rosing. (2015). The Complete Business Process Handbook. Waltham, USA: Morgan Kaufmann. http://dx.doi.org/10.1016/B978-0-12-799959-3.00004-5
- Sprenger, R. & Mönch, L. (2014). A decision support system for cooperative transportation planning: Design, implementation and performance assessment. Expert Systems with Applications, 41(2014), 5125-5138. http://dx.doi.org/10.1016/j.eswa.2014.02.032
- Šuc, D., & Bratko, I. (2001). Induction of qualitative trees.
- Šuc, D., & Bratko, I. (2003). Qualitative reverse engineering. Retrieved from https://www.researchgate.net/publication/221344771_Qualitative_reverse_engineering
- Terek, M. (2010). Hĺbková analýza údajov. Retrieved from https://www.portalvs.sk/sk/prehlad- projektov/kega/3027
- Vogetseder, G. (2008). Functional analysis of real world truck fuel consumption data. Retrieved from http://www.diva- portal.org/smash/get/diva2:238366/FULLTEXT01.pdf
- Vom Brocke, J. V., & Mendling, J. (Eds.) (2018). Business Process Management Cases. Digital Innovation and Business Transformation in Practice. Cham: Springer. http://dx.doi.org/10.1007/978-3-319-58307-5
- Vukšić, V., Bach, V. B. M., & Popovič, A. (2013). Supporting performance management with business process management and business intelligence: A case analysis of integration and orchestration. International Journal of Information Management, 4(33), 613-619. https://doi.org/10.1016/j.ijinfomgt.2013.03.008
- Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics and big data: A revolution that will transform supply chain design and management. Journal of Business Logistics, 34(2), 77-84. http://dx.doi.org/10.1111/jbl.12010
- Wegener, D., & Rüping, S. (2010). On integrating data mining into business processes. Business information systems. Lecture Notes in Business Information Processing, 47, 183-194. http://dx.doi.org/10.1007/978-3-642-12814-1_16
- Zhang Y., Zhang G., & Du. W. (2015) An optimization method for shopfloor material handling based on real-time and multi- source manufacturing data. International Journal of Production Economics, 165, 282-292. http://dx.doi.org/10.1016/j.ijpe.2014.12.029
- Cited by
- ISSN
- 2299-7075
- Language
- eng
- URI / DOI
- https://doi.org/10.7341/20201613