BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Okoń-Horodyńska Ewa (Jagiellonian University, Poland), Zachorowska-Mazurkiewicz Anna (Jagiellonian University, Poland), Wisła Rafał (Jagiellonian University, Poland), Sierotowicz Tomasz (Jagiellonian University, Poland)
Title
Effective Management of Human Resources in Innovation Process : Gender-Related Issue
Source
Optimum : Economic Studies, 2020, nr 2(100), s. 16-35, rys., tab., aneks, bibliogr. s. 31-35
Keyword
Płeć, Zarządzanie zasobami ludzkimi, Zarządzanie innowacjami, Procesy innowacyjne
Gender, Human Resources Management (HRM), Innovation management, Innovation processes
Note
JEL Classification: O15, O31, O35, D91
summ.
Abstract
Purpose - Most of the subject literature provides information on the skills and competencies required to join teams and work in the innovation process. So far, there has been a research gap concerning the issue in question. The results of researching the issue can, however, be used to ensure more effective innovation development through a better-than-ever selection of individuals for each phase of the innovation process. The subject of research was to examine, identify and describe differences in the participation of men and women in the innovation process, taking into account not only competencies but also personal characteristics, attitudes and behaviour. Research method - The research covered 1,164 innovative companies - beneficiaries of the European Union Cohesion Policy 2007-2013. The conceptual framework of the model described by the pre-25 variables has been verified. Applying the selected statistically significant variables and components ensures more accuracy for the model developed in the present study. Both the conceptual research context and preliminary analysis fulfil the assumptions for using principal component analysis and the Promax rotation method. Results - The results prompt a new way of creating more effective teams in the process of innovation, with managers considering not only competencies but also attitudes, behaviours and gender-related issues. (original abstract)
Accessibility
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
Full text
Show
Bibliography
Show
  1. Abels G., 2012, Research by, for and about Women: Gendering Science and Research Policy [in:] Gendering European Union. New Approaches to Old Democratic Deficits, Abels G., Mushaben J.M. (eds.), Palgrave Macmillan, Basingstoke.
  2. Acker J., 2006, Gender Regimes: Gender, Class, and Race in Organizations, "Gender & Society", vol. 20(4), pp. 441-464, DOI: 10.1177/0891243206289499.
  3. Alsos G.A., Ljunggren E., Hytti U., 2013, Gender and innovation: state of the art and a research agenda, "International Journal of Gender and Entrepreneurship", vol. 5(3), pp. 236-256, DOI: 10.1108/IJGE-06-2013-0049.
  4. Amabile T.M., Conti R., Coon H., Lazenby J., Herron M., 1996, Assessing the Work Environment for Creativity, "Academy of Management Journal", vol. 39(5), pp. 1154-1184, DOI: 10.5465/256995.
  5. Bartlett M.S., 1950, Tests of significance in factor analysis, "British Journal of Psychology", vol. 3, Part I, pp. 77-85.
  6. Buljubasic T., 2020, Developing Innovation: Innovation Management in IT Companies, De Gruyter, New York.
  7. Cameron K., Quinn R., DeGraff J., Thakor A., 2014, Competing Values Leadership, Edward Elgar Pub, New York.
  8. Carrasco I., 2014, Gender gap in innovation: an institutionalist explanation, "Management Decision", vol. 52(2), pp. 410-424, DOI: 10.1108/MD-07-2012-0533.
  9. Cattell R.B., 1966, The scree test for the number of factors, "Multivariate Behavioral Research", vol. 1(2), pp. 245-276, DOI: 10.1207/s15327906mbr0102_10.
  10. Cattell R.B., 1978, The Scientific Use of Factor Analysis, Plenum, New York.
  11. Cirera X., Muzi S., 2020, Measuring innovation using firm-level surveys: Evidence from developing countries, "Research Policy", vol. 49(3), DOI: 10.1016/j.respol.2019.103912.
  12. Comrey A.L., Lee H.B., 1992, A first course in factor analysis, Erlbaum, Hillside.
  13. Cooper R., 2012, The gender gap in union leadership in Australia: a qualitative study, "Journal of Industrial Relations", vol. 54(2), pp. 131-146, DOI: 10.1177/0022185612437836.
  14. Cortina J.M., 1993, What Is Coefficient Alpha? An Examination of Theory and Applications, "Journal of Applied Psychology", vol. 78(1), pp. 98-104, DOI: 10.1037/0021-9010.78.1.98.
  15. Costello A., Osborne J.W., 2005, Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most from Your Analysis. Practical Assessment, "Practical Assessment, Research, and Evaluation", vol. 10(7), pp. 1-9, DOI: 10.7275/jyj1- 4868.
  16. Cramer D., 1998, Fundamental Statistics for Social Research, Routledge, London.
  17. Cramer D., Howitt D., 2004, The SAGE Dictionary of Statistics, SAGE, London.
  18. Cronbach L.J., 1951, Coefficient alpha and the internal structure of tests, "Psychometrika", vol. 16, pp. 297-334, DOI: 10.1007/BF02310555.
  19. Cronbach L.J., 1970, Essentials of Psychological Testing, Harper & Row, New York.
  20. Cronbach L.J., Shavelson R.J., 2004, My current thoughts on coefficient alpha and successor procedures, "Educational and Psychological Measurement", vol. 64(3), pp. 391-418, DOI: 10.1177/0013164404266386.
  21. Cropley D., Cropley A., 2015, The psychology of Innovation in Organizations, Cambridge University Press, New York.
  22. DeGraff J., Quinn S., 2007, Leading Innovation: How to Jump Start Your Organization's Growth Engine, McGraw-Hill, New York.
  23. DeVellis R.F., 2012, Scale development: Theory and applications, Sage, Los Angeles.
  24. Dien J., Beal D.J., Berg P., 2005, Optimizing principal components analysis of event-related potentials: matrix type, factor loading weighting, extraction, and rotations, "Clin Neurophysiol", vol. 116(8), pp. 1808-1825, DOI: 10.1016/j.clinph.2004.11.025.
  25. DiStefano Ch., Zhu M., Mîndrilă D., 2009, Understanding and Using Factor Scores: Considerations for the Applied Researcher. Practical Assessment, "Research & Evaluation", vol. 14 (20), pp. 1-11, DOI: 10.7275/da8t-4g52.
  26. Doane D.P., Seward L.E., 2011, Measuring Skewness: A Forgotten Statistic?, "Journal of Statistics Education", vol. 19(2), pp. 1-18, DOI: 10.1080/10691898.2011.11889611.
  27. du Vall M., Majorek M., 2015, Taking gender seriously Present trends and recommendations for scientific environment, [in:] Statistical profiles of women's and men's status in the economy, science and society, Okoń-Horodyńska E., Zachorowska-Mazurkiewicz A. (eds.), Jagiellonian University Press, Krakow.
  28. Dyląg A., Szafrański M., 2015, Contemporary value profiles of women and men - Polish pilot survey, [in:] Statistical profiles of women's and men's status in the economy, science and society, Okoń-Horodyńska E., Zachorowska-Mazurkiewicz A. (eds.), Jagiellonian University Press, Krakow.
  29. Dziuban C.D., Shirkey E.C., 1974, When is a correlation matrix appropriate for factor analysis?, "Psychological Bulletin", vol. 81, pp. 358-361, DOI: 10.1037/h0036316.
  30. Field A., 2012, Discovering Statistics Using IBM SPSS Statistics, SAGE, London.
  31. Fogelberg E.A., 2014, A gender perspective as a  trigger and facilitator of innovation, "International Journal of Gender and Entrepreneurship", vol. 6(2), pp. 163-180, DOI: 10.1108/IJGE-09-2012-0045.
  32. Foss L., Woll K., Moilanen M., 2013, Creativity and implementations of new ideas: do organizational structure, work environment and gender matter?, "International Journal of ender and Entrepreneurship", vol. 5(3), pp. 298-322, DOI: 10.1108/IJGE-09-2012- 0049.
  33. George D., Mallery P., 2003, SPSS for Windows step by step: A simple guide and reference, Allyn & Bacon, Boston.
  34. Hair J.F., Jr. Black W.C., Babin B.J., Anderson R.E., 2014, Multivariate Data Analysis, Pearson, Harlow.
  35. Henson R.K., Roberts J.K., 2006, Use of exploratory factor analysis in published research: Common errors and some comment on improved practice, "Educational and Psychological Measurement", vol. 66, pp. 393-416, DOI: 10.1177/0013164405282485.
  36. Hunt J., Herman H., Munroe D.J., 2013, Why are women underrepresented amongst patentees?, "Research Policy", vol. 42 (4), pp. 831-843, DOI: 10.1016/j.respol.2012.11.004.
  37. Joshi S., Wamba S.F., Garza-Reyes J.A., 2020, Managing Service Operations: Strategies, Innovations and Sustainable Technologies, Kogan Page, New York.
  38. Kaiser H.F., 1960, The application of electronic computers to factor analysis, "Educational and Psychological Measurement", vol. 20(1), pp. 141-151, DOI: 10.1177/001316446002000116.
  39. Kaiser H.F., 1970, A second generation little jiffy, "Psychometrika", vol. 35(4), pp. 401-415, DOI: 10.1007/BF02291817.
  40. Kaiser H.F., Rice J., 1974, Little jiffy, mark iv, "Educational and Psychological Measurement", vol. 34, pp. 111-117, DOI: 10.1177/001316447403400115.
  41. Kline P., 1994, An easy guide to factor analysis, SAGE, Thousand Oaks.
  42. Kline P., 2000, The handbook of psychological testing, Routledge, London.
  43. Kopycińska D., 2015, The professional situation of women and men in Poland - declarations and reality, [in:] Statistical profiles of women's and men's status in the economy, science and society, Okoń-Horodyńska E., Zachorowska-Mazurkiewicz A. (eds.), Jagiellonian University Press, Krakow.
  44. Larsen R., Warne R.T., 2010, Estimating confidence intervals for eigenvalues in exploratory factor analysis, "Behavior Research Methods", vol. 42, pp. 871-876, DOI: 10.3758/BRM.42.3.871.
  45. MacCallum R.C., Widaman K.F., Zhang S., Hong S., 1999, Sample size in factor analysis, "Psychological Methods", vol. 4(1), pp. 84-99, DOI: 10.1037/1082-989X.4.1.84.
  46. Norman G.R., Streiner D.L., 2003, Statistics, PDQ, London.
  47. O'Connor B.P., 2000, SPSS and SAS programs for determining the number of components using parallel analysis and Velicer's MAP test, "Behavior Research Methods, Instrumentation, and Computers", vol. 32, pp. 396-402.
  48. Statistical profiles of women's and men's status in the economy, science and society, 2015, Okoń-Horodyńska E., Zachorowska-Mazurkiewicz A. (eds.), Jagiellonian University Press, Krakow.
  49. Oslo Manual: Guidelines for Collecting and Interpreting Innovation Data, 2018, OECD Publisher, Paris.
  50. Østergaard C.R., Timmermans B., Kristinsson K., 2011, Does a different view create something new? The effect of employee diversity on innovation, "Research Policy", vol. 40(3), pp. 500-510, DOI: 10.1016/j.respol.2010.11.004.
  51. Pett M.A., Lackey N.R., Sullivan J.J., 2003, Making Sense of Factor Analysis: The use of factor analysis for instrument development in health care research, SAGE, Los Angeles.
  52. Ranga M., Etzkowitz H., 2010, Athena in the World of Techne: The Gender Dimension of Technology, Innovation and Entrepreneurship, "Journal of Technology, Management & Innovation", vol. 5(1), pp. 1-12, DOI: 10.4067/S0718-27242010000100001.
  53. Razali N.M., Wah Y.B., 2011, Power Comparisons of Shapiro-Wilk, Kolomogorov-Smirnov, Lilliefors and Anderson-Darling Tests, "Journal of Statistical Modeling and Analysis", vol. 2(1), pp. 21-33.
  54. Regular Reports from the Commission on Hungary's Progress towards Accession, 2001, EC Publishers, Brussels.
  55. Sawyer K., 2012, Explaining Creativity: The Science of Human Innovation, Oxford University Press, Oxford.
  56. Schumpeter J.A., 1934, The theory of economic development, Oxford University Press, New York.
  57. Shapiro S.S., Wilk M.B., 1965, An Analysis of Variance Test for Normality (Complete Samples), "Biometrika", vol. 52(3/4), pp. 591-611, DOI: 10.1093/biomet/52.3- 4.591.
  58. Sierotowicz T., 2015, Patent activity as an effect of the research and development of the business enterprise sectors in the countries of the European Union, "Journal of International Studies", vol. 8(2), pp. 31-43, DOI: 10.14254/2071-8330.2015/8-2/9.
  59. Streiner D.L., Norman G.R., Cairney J., 2015, Health Measurement Scales: A practical guide to their development and use, Oxford University Press, Oxford.
  60. Zachorowska-Mazurkiewicz A., 2016, Praca kobiet. Perspektywa ekonomii głównego nurtu i ekonomii feministycznej, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków.
  61. Zinbarg R., Yovel I., Revelle W., McDonlad R., 2006, Estimating Generalizability to a Latent Variable Common to All of a Scale's Indicators: A Comparison of Estimators for ωh, "Applied Psychological Measurement", vol. 30(2), pp. 121-144, DOI: 10.1177/0146621605278814.
Cited by
Show
ISSN
1506-7637
Language
eng
URI / DOI
http://dx.doi.org/10.15290/oes.2020.02.100.02
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu