BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Wójcik Sebastian (University of Rzeszów, Poland; Statistical Office in Rzeszów, Poland)
Title
Through a Random Route to the Goal: Theoretical Background and Application of the Method in Tourism Surveying in Poland
Source
Statistics in Transition, 2020, vol. 21, nr 3, s. 185-193, tab., bibliogr. s. 192-193
Keyword
Metodologia badań statystycznych, Badania ankietowe, Badania reprezentacyjne, Estymatory, Analiza ruchu turystycznego
Methodology of statistical surveys, Questionnaire survey, Sampling survey, Estimators, Analysis of tourist movement
Note
summ.
Abstract
Classic survey methods are ineffective when surveying a small or rare population. Several methods have been developed to address this issue, but often without providing a full mathematical justification. In this paper we propose estimators of parameters relating to Random Route Sampling and explore their basic properties. A formula for the Horvitz-Thompson estimator weights is presented. Finally, a case of a tourism-related survey conducted in Poland is discussed. (original abstract)
Accessibility
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
Full text
Show
Bibliography
Show
  1. HOFFMEYER-ZLOTNIK, J. H. P., (2003). New Sampling Designs and the Quality of Data. Methodoloski zvezki - Advances in Methodology and Statistics, 19. Ljubljana: FDV, pp. 205-217.
  2. DE RADA, V. D., MARTIN, V. M., (2014). Random Route and Quota Sampling: Do They Offer Any Advantage over Probably Sampling Methods?, Open Journal of Statistics, 4 (5). DOI: 10.4236/ojs.2014.45038.
  3. BAUER, J. J., (2014). Selection Errors of Random Route Samples, Sociological Methods & Research, 43 (3), pp. 519-544. DOI: 10.1177/0049124114521150.
  4. BAUER, J. J., (2016). Biases in Random Route Surveys, Journal of Survey Statistics and Methodology, 4 (2), pp. 263-287. DOI: 10.1093/jssam/smw012.
  5. PFANZAGL, J., (1994). Parametric Statistical Theory, Berlin: Walter de Gruyter.
  6. GUENTHER, W. C., (1975). The Inverse Hypergeometric - A Useful Model. Statistica Neerlandica, 29, pp. 129-144.
  7. ZHANG, L., JOHNSON, W. D., (2011). Approximate Confidence Intervals for a Parameter of the Negative Hypergeometric Distribution Proceedings of the Survey Research Methods Section, American Statistical Association.
  8. JOHNSON, N. L., KOTZ, S., (1969). Distributions in statistics, discrete distributions, Wiley.
  9. BANDYOPADHYAY, P. S., FORSTER, M. R., (2011). Philosophy of Statistics, North Holland.
  10. HILBE, J. M., (2011). Negative binomial regression, Cambridge University Press.
  11. STUART, A., (1998). Kendall's Advanced Theory of Statistics, Wiley.
Cited by
Show
ISSN
1234-7655
Language
eng
URI / DOI
http://dx.doi.org/10.21307/stattrans-2020-051
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu