BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Ferreira Paulo (University of Évora, Portugal), Tilfani Oussama (Cadi Ayyad University, Morocco), Pereira Éder (Federal Institute of Maranhão, Brazil), Tavares Cleónidas (SENAI CIMATEC School of Technology, Brazil), Pereira Hernane (SENAI CIMATEC School of Technology, Brazil), El Boukfaoui My Youssef (Cadi Ayyad University, Morocco)
Title
Dynamic Connectivity in a Financial Network Using Time-Varying DCCA Correlation Coefficients
Source
Econometric Research in Finance, 2021, vol. 6, nr 1, s. 57-75, rys., bibliogr. 79 poz.
Keyword
Rynki finansowe, Interesariusze, Korelacja, Fundusze hedgingowe
Financial markets, Stakeholders, Correlation, Hedge fund
Note
JEL classification: C58, G01, G15
summ.
Abstract
This paper aims to analyse the connectivity of 13 stock markets, between 1998 and 2019, with a time-varying proposal, to evaluate evolution of the linkage between these markets over time. To do so, we propose to use a network built based on the correlation coefficients from the Detrended Cross-Correlation Analysis, using a sliding windows approach. Besides allowing for analysis over time, our approach also enables us to verify how the network behaves for different time scales, which enriches the analysis. We use two different properties of networks: global efficiency and average grade, to measure the network's connectivity over time. We find that the markets under analysis became more connected before the subprime crisis, with this behavior extending even after the Eurozone crisis, showing that during extreme events there is an increase in financial risk, as found in the international literature.(original abstract)
Accessibility
The Library of Warsaw School of Economics
Full text
Show
Bibliography
Show
  1. Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A. (2015). Systemic Risk and Stability in Financial Networks. "American Economic Review", 105(2):564-608.
  2. Barabasi, A. L. Albert, R. (1999). Emergence of Scaling in Random Networks. "Science", 286(5439):509-512.
  3. Battiston, S., Puliga, M., Kaushik, R., Tasca, P., Caldarelli, G. (2012). DebtRank: Too Central to Fail? Financial Networks, the FED and Systemic Risk. Scientific Reports, 2:541.
  4. Beine, M., Cosma, A., Vermeulen, R. (2010). The Dark Side of Global Integration: Increasing Tail Dependence. "Journal of Banking & Finance", 34(1):184-192.
  5. Bekaert, G., Ehrmann, M., Fratzscher, M. (2014). The Global Crisis and Equity Market Contagion. "The Journal of Finance", 69(6):2597-2649.
  6. Bekaert, G., Harvey, C., and Lundblad, C. (2005). Does Financial Liberalization Spur Growth? "Journal of Financial Economics", 77:3-56.
  7. Bertero, E. Mayer, C. (1990). Structure and Performance: Global Interdependence of Stock Markets Around the Crash of October 1987." European Economic Review", 34:1155-1180.
  8. Bonanno, G., Lillo, F., Mantegna, R. N. (2001). High-Frequency Cross-Correlation in a Set of Stocks. "Quantitative Finance", 1(1):96-104.
  9. Brooks, R. and Del Negro, M. (2004). The Rise in Comovement Across National Stock Markets: Market Integration or IT Bubble? "Journal of Empirical Finance", 11:659-680.
  10. Cajueiro, D. Tabak, B. (2004). The Hurst Exponent over Time: Testing the Assertion that Emerging Markets are Becoming More Efficient. "Physica A", 336(3-4):521-537.
  11. Costa, L. D. F., Rodrigues, F. A., Travieso, G., Villas Boas, P. R. (2007). Characterization of Complex Networks: A Survey of Measurements. "Advances in Physics", 56(1):167-242.
  12. Delignieres, D., Ramdani, S., Lemoine, L., Torre, K., Fortes, M., Ninot, G. (2006). Fractal Analyses for 'Short' Time Series: A Re-assessment of Classical Methods. "Journal of Mathematical Psychology", 50:525-544.
  13. Diebold, F. X. Yılmaz, K. (2014). On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms." Journal of Econometrics", 182(1):119-134.
  14. Edwards, S. Susmel, R. (2000). Interest Rate Volatility and Contagion in Emerging Markets: Evidence From the 1990s. NBER Working Paper 7183.
  15. El Alaoui, M. Benbachir, D. (2013). Multifractal Detrended Cross-Correlation Analysis in the MENA Area. "Physica A", 392(23):5985-5993.
  16. Fama, E. (1965). The Behavior of Stock-Market Prices. "The Journal of Business", 38(1):34-105.
  17. Fama, E. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. "The Journal of Finance", 25:383-417.
  18. Ferreira, P. (2017). Portuguese and Brazilian Stock Market Integration: A Non-linear and Detrended Approach. "Portuguese Economic Journal", 16(1):49-63.
  19. Forbes, K. Rigobon, R. (2002). No Contagion, Only Interdependence: Measuring Stock Market Co-movements. "The Journal of Finance," 57(5):2223-2261.
  20. Gai, P. Kapadia, S. (2010). Contagion in Financial Networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2120):2401-2423.
  21. Glasserman, P. Young, H. P. (2015). How Likely Is Contagion in Financial Networks? "Journal of Banking & Finance", 50:383-399.
  22. Hassler, J. (1995). Regime Shifts and Volatility Spillovers on International Stock Markets. Seminar Paper 603, Institute for International Economic Studies.
  23. Huang, S., Chow, S. C., Xu, R., Wong, W. K. (2015). Analyzing the Hong Kong Stock Market Structure: A Complex Network Approach. Available at SSRN: https://ssrn.com/abstract=2633433.
  24. Jackson, M. O. (2010). Social and Economic Networks. Princeton University Press.
  25. Junior, L. S. Franca, I. D. P. (2012). Correlation of Financial Markets in Times of Crisis. "Physica A", 391(1-2):187-208.
  26. Kasa, K. (1992). Common Stochastic Trends in International Stock Markets. "Journal of Monetary Economics", 29:95-124.
  27. Kenett, D. Y., Tumminello, M., Madi, A., Gur-Gershgoren, G., Mantegna, R. N., Ben-Jacob, E. (2010). Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market. "PloS One", 5(12):e15032.
  28. King, M. Wadhwani, S. (1990). Transmission of Volatility Between Stock Markets. "Review of Financial Studies", 3(1):5-33.
  29. Kirchner, M., Schubert, P., Schmidtbleicher, D., Haas, C. (2012). Evaluation of the Temporal Structure of Postural Sway Fluctuations Based on a Comprehensive Set of Analysis Tools. "Physica A", 391:4692-4703.
  30. Kizys, R. Pierdzioch, C. (2009). Changes in the International Comovement of Stock Returns and Asymmetric Macroeconomic Shocks. "Journal of International Financial Markets, Institutions and Money", 19(2):289-305.
  31. Kristoufek, L. (2012). Fractal Market Hypothesis and the Global Financial Crisis: Scaling, Investment Horizons and Liquidity. Advances in Complex Systems, 15(6):1250065.
  32. Kristoufek, L. (2014a). Detrending Moving-Average Cross-Correlation Coefficient: Measuring Cross-Correlations Between Non-stationary Series." Physica A", 406:169-175.
  33. Kristoufek, L. (2014b). Measuring Correlations Between Non-stationary Series with DCCA Coefficient." Physica A", 402:291-298.
  34. Kristoufek, L., Janda, K., Zilberman, D. (2012). Correlations Between Biofuels and Related Commodities Before and During the Food Crisis: A Taxonomy Perspective. "Energy Economics", 34(5):1380-1391.
  35. Kristoufek, L., Janda, K., Zilberman, D. (2013). Regime-Dependent Topological Properties of Biofuels Networks. "The European Physical Journal B", 86(2):40.
  36. Kwapien, J., Oswiecimka, P., Forczek, M., Drozdz, S. (2017). Minimum Spanning Tree Filtering of Correlations for Varying Time Scales and Size of Fluctuations. "Physical Review E", 95(5):052313.
  37. Latora, V. Marchiori, M. (2001). Efficient Behavior of Small-World Networks. "Physical Review Letters", 87(19):198701.
  38. Li, D., Kou, Z., Sun, Q. (2015). The Scale-Dependent Market Trend: Empirical Evidences Using the Lagged DFA Method. "Physica A", 433:26-35.
  39. Longin, F. Solnik, B. (1995). Is the Correlation in International Equity Returns Constant: 1960-1990? "Journal of International Money and Finance", 14(1):3-26.
  40. Ma, F., Wei, Y., Huang, D. (2013). Multifractal Detrended Cross-Correlation Analysis Between the Chinese Stock Market and Surrounding Stock Markets. "Physica A", 392(7):1659-1670.
  41. Mandelbrot, B. (1963). New Methods in Statistical Economics. Journal of Political Economy, 71(5):421-440.
  42. Mantegna, R. N. (1999). Hierarchical Structure in Financial Markets. "The European Physical Journal B-Condensed Matter and Complex Systems", 11(1):193-197.
  43. Mantegna, R. N. Stanley, H. (1999). Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge, UK.
  44. Martin-Montoya, L., Aranda-Camacho, N., Quimbay, C. (2015). Long-Range Correlations and Trends in Colombian Seismic Time Series. Physica A, 421:361-370.
  45. Matesanz, D., Torgler, B., Dabat, G., Ortega, G. J. (2014). Co-movements in Commodity Prices: A Note Based on Network Analysis. "Agricultural Economics", 45(S1):13-21.
  46. Minoiu, C., Kang, C., Subrahmanian, V. S., Berea, A. (2015). Does Financial Connectedness Predict Crises? "Quantitative Finance", 15(4):607-624.
  47. Minoiu, C. Reyes, J. A. (2013). A Network Analysis of Global Banking: 1978-2010. "Journal of Financial Stability", 9(2):168-184.
  48. Newman, M. (2018). Networks. Oxford University Press.
  49. Obstfeld, M. (1994). Risk-Taking, Global Diversification, and Growth. "The American Economic Review", 84(5):1310-1329.
  50. Onnela, J. P., Chakraborti, A., Kaski, K., Kertesz, J., Kanto, A. (2003). Dynamics of Market Correlations: Taxonomy and Portfolio Analysis. "Physical Review E", 68(5):056110.
  51. Peng, C., Buldyrev, S., Havlin, S., Simons, M., Stanley, H., Goldberger, A. (1994). Mosaic Organization of DNA Nucleotides. "Physical Review E", 49:1685-1689.
  52. Pereira, E., Ferreira, P., da Silva, M., Miranda, J., Pereira, H. (2019). Multiscale Network for 20 Stock Markets Using DCCA. "Physica A", 529:121542.
  53. Peters, E. (1991). Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility. John Wiley & Sons, New York.
  54. Peters, E. (1994). Fractal Market Analysis: Applying Chaos Theory to Investment and Economics. John Wiley & Sons, New York.
  55. Piao, L. Fu, Z. (2016). Quantifying Distinct Associations on Different Temporal Scales: Comparison of DCCA and Pearson Methods. "Scientific Reports", 6:36759.
  56. Podobnik, B., Jiang, Z., Zhou, W., Stanley, H. (2011). Statistical Tests for Powerlaw Cross-Correlated Processes." Physical Review E", 84:1-8.
  57. Podobnik, B. Stanley, H. (2008). Detrended Cross-Correlation Analysis: A New Method for Analyzing Two Non-stationary Time Series. "Physical Review Letters", 100(8):084102.
  58. Rachev, S., Weron, A., Weron, R. (1999). CED Model for Asset Returns and Fractal Market Hypothesis. "Mathematical and Computer Modelling", 29:23-36.
  59. Rua, A. and Nunes, L. C. (2009). International Comovement of Stock Market Returns: A Wavelet Analysis." Journal of Empirical Finance", 16(4):632-639.
  60. Schweitzer, F., Fagiolo, G., Sornette, D., Vega-Redondo, F., Vespignani, A., White, D. R. (2009). Economic Networks: The New Challenges." Science", 325(5939):422-425.
  61. Serletis, A. King, M. (1997). Common Stochastic Trends and Convergence of European Union Stock Markets. The Manchester School, 65(1):44-57.
  62. Shi, W., Wang, S., Lin, A. (2014). Multiscale Multifractal Detrended Cross-Correlation Analysis of Financial Time Series. "Physica A", 403:35-44.
  63. Soramaki, K., Bech, M. L., Arnold, J., Glass, R. J., Beyeler, W. E. (2007). The Topology of Interbank Payment Flows. "Physica A", 379(1):317-333.
  64. Sornette, D. (2003). Why Stock Markets Crash? Critical Events in Complex Financial Systems. Princeton University Press, Princeton, NJ.
  65. Stanley, H., Afanasyev, V., Amaral, L., Buldyrev, S., Goldberger, A., Havlin, S., Leschorn, H., Maass, P., Mantegna, R., Peng, C., Prince, P., Salinger, M., Stanley, M., Viswanathan, G. (1996). Anomalous Fluctuations in the Dynamics of Complex Systems: From DNA and Physiology to Econophysics. "Physica A" 224(1):302-321.
  66. Tabak, B. M., Takami, M., Rocha, J. M., Cajueiro, D. O., Souza, S. R. (2014). Directed Clustering Coefficient as a Measure of Systemic Risk in Complex Banking Networks." Physica A", 394:211-216.
  67. Tilfani, O., Ferreira, P., El Boukfaoui, M. Y. (2019). Dynamic Cross-Correlation and Dynamic Contagion of Stock Markets: A Sliding Windows Approach with the DCCA Correlation Coefficient. Empirical Economics.
  68. Tumminello, M., Aste, T., Di Matteo, T., Mantegna, R. N. (2005). A Tool for Filtering Information in Complex Systems. Proceedings of the National Academy of Sciences, 102(30):10421-10426.
  69. Usman, A., Syed, Z., Qiasar, A. (2015). Robust Analysis for Downside Risk in Portfolio Management for a Volatile Stock Market. "Economic Modelling", 44:86-96.
  70. Valls, C. (2012). Rational Integrability of a Nonlinear Finance System. "Chaos Soliton & Fractals", 45:141-146.
  71. Wang, G., Xie, C., Han, F., Sun, B. (2012). Similarity Measure and Topology Evolution of Foreign Exchange Markets Using Dynamic Time Warping Method: Evidence From Minimal Spanning Tree. "Physica A", 391:4136-4146.
  72. Wang, G. J., Xie, C., Chen, S., Yang, J. J., Yang, M. Y. (2013a). Random Matrix Theory Analysis of Cross-Correlations in the US Stock Market: Evidence From Pearson's Correlation Coefficient and Detrended Cross-Correlation Coefficient. "Physica A", 392(17):3715-3730.
  73. Wang, G. J., Xie, C., Chen, Y. J., Chen, S. (2013b). Statistical Properties of the Foreign Exchange Network at Different Time Scales: Evidence From Detrended Cross-Correlation Coefficient and Minimum Spanning Tree. "Entropy", 15(5):1643-1662.
  74. Wang, G. J., Xie, C., He, K., Stanley, H. E. (2017). Extreme Risk Spillover Network: Application to Financial Institutions. "Quantitative Finance", 17(9):1417-1433.
  75. Watts, D. J. Strogatz, S. H. (1998). Collective Dynamics of 'Small-World' Networks. "Nature", 393(6684):440-442.
  76. Yan, X. G., Xie, C., Wang, G. J. (2014). The Stability of Financial Market Networks. EPL (Europhysics Letters), 107(4):48002.
  77. Yellen, J. (2013). Interconnectedness and Systemic Risk: Lessons From the Financial Crisis and Policy Implications. Board of Governors of the Federal Reserve System, Washington, DC.
  78. Zebende, G. (2011). DCCA Cross-Correlation Coefficient: Quantifying a Level of Cross-Correlation." Physica A", 390(4):1643-1662.
  79. Zhao, X., Shang, P., Huang, J. (2017). Several Fundamental Properties of DCCA Cross-Correlation Coefficient." Fractals", 25(2):1750017.
Cited by
Show
ISSN
2451-1935
2451-2370
Language
eng
URI / DOI
https://doi.org/10.2478/erfin-2021-0004
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu