- Author
- Cai Song (Carleton University, Ottawa, ON, Canada), Rao J. N. K. (Carleton University, Ottawa, ON, Canada), Dumitrescu Laura (Victoria University of Wellington, Wellington, New Zealand), Chatrchi Golshid (Statistics Canada, Ottawa, Ontario, Canada)
- Title
- Effective Transformation-Based Variable Selection Under Two-Fold Subarea Models in Small Area Estimation
- Source
- Statistics in Transition, 2020, vol. 21, nr 4 Special Issue, s. 68-83, tab., dodatki, bibliogr. s. 78-79
- Keyword
- Statystyka małych obszarów, Dobór zmiennych, Modele statystyczne
Small area estimates, Variables selection, Statistical models - Note
- summ.
- Abstract
- We present a simple yet effective variable selection method for the two-fold nested subarea model, which generalizes the widely-used Fay-Herriot area model. The twofold subarea model consists of a sampling model and a linking model, which has a nested-error model structure but with unobserved responses. To select variables under the two-fold subarea model, we first transform the linking model into a model with the structure of a regular regression model and unobserved responses. We then estimate an information criterion based on the transformed linking model and use the estimated information criterion for variable selection. The proposed method is motivated by the variable selection method of Lahiri and Suntornchost (2015) for the Fay-Herriot model and the variable selection method of Li and Lahiri (2019) for the unit-level nested-error regression model. Simulation results show that the proposed variable selection method performs significantly better than some naive competitors, especially when the variance of the area-level random effect in the linking model is large. (original abstract)
- Accessibility
- The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice - Full text
- Show
- Bibliography
-
- FAY, R. E., HERRIOT, R. A., (1979). Estimates of income for small places: An application of James-Stein procedures to census data. Journal of the American Statistical Association, 74(366), pp. 269-277.
- FULLER, W. A., BATTESE, G. E., (1973). Transformations for estimation of linear models with nested-error structure. Journal of the American Statistical Association, 68(343), pp. 626-632.
- HAN, B., (2013). Conditional Akaike information criterion in the Fay-Herriot model. Statistical Methodology, 11, pp. 53-67.
- LAHIRI, P., LI, Y., (2009). A new alternative to the standard F test for clustered data. Journal of Statistical Planning and Inference, 139(10), pp. 3430-3441.
- LAHIRI, P., SUNTORNCHOST, J., (2015). Variable selection for linear mixed models with applications in small area estimation. Sankhy¯a B, 77(2), pp. 312-320.
- LI, Y., LAHIRI, P., (2019). A simple adaptation of variable selection software for regression models to select variables in nested error regression models. Sankhy¯a B, 81(2), pp. 302-371.
- MAGNUS, J. R., NEUDECKER, H., (2019). Matrix Differential Calculus with Applications in Statistics and Econometrics, 3rd Edition. Hoboken: Wiley.
- MEZA, J. L., LAHIRI, P., (2005). A note on the Cp statistic under the nested error regression model. Survey Methodology, 31(1), pp. 105-109.
- MOHADJER, L., RAO, J. N. K., LIU, B., KRENZKE, T., VAN DE KERCKHOVE, W., (2012). Hierarchical Bayes small area estimates of adult literacy using unmatched sampling and linking models. Journal of the Indian Society of Agricultural Statistics, 66(1), pp. 55-63.
- RAO, J. N. K., MOLINA, I., (2015). Small Area Estimation, 2nd Edition. Hoboken: Wiley.
- TORABI, M., RAO, J. N. K., (2014). On small area estimation under a sub-area level model. Journal of Multivariate Analysis, 127, pp. 36-55.
- VAIDA, F., BLANCHARD, S., (2005). Conditional Akaike information for mixed-effects models. Biometrika, 92(2), pp. 251-370.
- VAN DER VAART, A. W., (1998). Asymptotic Statistics. Cambridge: Cambridge University Press.
- Cited by
- ISSN
- 1234-7655
- Language
- eng
- URI / DOI
- http://dx.doi.org/10.21307/stattrans-2020-031






