BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Zieliński Ryszard (Poznań University of Economics and Business)
Title
Computation of the Krafft Temperature Value for Aqueous Solutions of Anionic Fluorosurfactants
Obliczanie temperatury Kraffta dla wodnych roztworów anionowych fluorosurfaktantów
Source
Towaroznawcze Problemy Jakości, 2020, nr 3, s. 87-97, tab., rys., bibliogr. 31 poz.
Polish Journal of Commodity Science
Keyword
Substancje powierzchniowo czynne, Towaroznawstwo przemysłowe, Badania towaroznawcze
Surfactants, Industrial commodities, Commodity research
Note
summ., streszcz.
Abstract
Praktyczną przydatnością w roztworach surfaktantów wodnych jest ich rozpuszczalność. Ilościowym parametrem charakteryzującym rozpuszczalność surfaktantów w roztworach wodnych jest temperatura Kraffta. Jest to temperatura (lub bardziej precyzyjnie, wąski zakres temperatur), powyżej której rozpuszczalność danego surfaktantu w wodzie gwałtownie wzrasta. Znajomość temperatury Kraffta dowolnego surfaktantu jest wymagana do zaprojektowania wysokiej jakości kompozycji nowych wyrobów chemii gospodarczej oraz produktów kosmetycznych, w których dany surfaktant może być stosowany jako składnik aktywny. W niniejszej pracy przedstawiono wyniki badań własnych dotyczących zależności pomiędzy temperaturą Kraffta dla anionowych fluorosurfaktantów w roztworach wodnych i ich budową chemiczną. Przeanalizowano dostępne w literaturze empiryczne wartości temperatury Kraffta dla wodnych roztworów 27 anionowych perfluorosurfaktantów i skorelowano je z ich strukturą chemiczną. Zapronowano zestaw 11 udziałów grup do obliczania wartości temperatury Kraffta dla wodnych roztworów anionowych perfluorosurfaktantów. Obliczone przy ich użyciu wartości temperatury Kraffta w roztworach wodnych dla 27 anionowych perfluorosurfaktantów porównano z danymi doświadczalnymi. Wykazano, że nowo zaproponowany zestaw wartości liczbowych udziałów przypisanych elementom strukturalnym perfluorosurfaktantów pozwala na prawidłowe oszacowanie wartości temperatury Kraffta w roztworach wodnych dla testowego zbioru danych z maksymalnym błędem 6,9°C oraz średnim błędem kwadratowym 4,1°C. (abstrakt oryginalny)

The practical usefulness of using surfactants in market products is determined by their chemical structure and solubility of aqueous solutions. In practice, it is important to know the temperature above which a given surfactant is soluble in an aqueous solution. The quantitative parameter characterizing the solubility of ionic surfactants in aqueous solutions is the Krafft temperature. It is a temperature (or more precisely, a narrow temperature range) above which the solubility of a given surfactant in water increases rapidly. Knowledge of Krafft temperature of any surfactant is required to design high quality compositions of new household chemistry products and cosmetic products in which a given surfactant can be used as the active ingredient. In this paper we present results of our study on the relationship between Krafft temperature in aqueous solutions of anionic fluorosurfactants and their chemical structure. Empirical values of the Krafft temperature available in the literature for aqueous solutions of 27 anionic perfluorosurfactants were correlated with their chemical structure. We developed a set of 11 group contributions for calculating Krafft temperature values for aqueous solutions of anionic perfluorosurfactans. Krafft temperature values calculated using them for aqueous solutions of 27 anionic perfluorosurfactants were compared with experimental data. It has been shown that the newly proposed set of numerical values of the group cotributions assigned to the structural elements of perfluorosurfactants allows for the correct estimation of the Krafft temperature values in aqueous solutions for the test data set with a maximum error of 6.9°C and an mean square error of 4.1°C. (original abstract)
Accessibility
The Main Library of the Cracow University of Economics
Bibliography
Show
  1. Carrriére G. (1978) active agents, cosmetics and toiletries. Elsevier, Amsterdam.
  2. Chanachichalermwong W. (2018) Development of group contribution models for use in surfactant selection - case sudy of single and mixed surfactant applications. Master thesis, Pertroleum and Pertrochemical College, Chulalongkorn University.
  3. Chanachichalermwong W., Charoensaeng A., Suriyapraphadilok U. (2019) Krafft point prediction of anionic surfactants using group contribution method: first-order and higher-order groups. Journal of Surfactants and Detergents, 22, 907-919.
  4. Fekarcha L., Tazerouti A. (2012) Surface activities, foam properties, HLB, and Krafft point of some n-alkanesulfonates (C14-C18) with different isomeric distributions. Journal of Surfactants and Detergents, 15, 419-431.
  5. Fletcher P.D.I. (1997) Fluorinated and semi-fluorinated surfactants. In: Robb I.D. (ed.) Specialist surfactants. Blackie Academic & Professional, London, pp. 104-142.
  6. González-Pérez A., Ruso J.M., Prieto G., Sarmiento F. (2004) The self-aggregation of sodium perfluorooctanoate in aqueous solution at different temperatures. Journal of Surfactants and Detergents, 7, 387-395.
  7. Gu T., Sjőblom J. (1991) Empirical relationships between the Krafft points and the structural units in surfactants. Acta Chemica Scandinavica, 45, 762-765.
  8. Ikawa Y., Tsuru S., Murata Y., Okawauchi M., Shigematsu M., Sugihara G. (1988) Effect of temperature on the electrical conductivity and the thermodynamics of micelle formation of sodium perfluorooctanoate. Journal of Solution Chemistry, 17, 125-137.
  9. Jalali-Heravi M., Konouz E. (2002) Use of quantitative structure - property relationships in predicting the Krafft point of anionic surfactants. Internet Electronic Journal of Molecular Design, 1, 410-417.
  10. Kissa E. (2001) Fluorimated surfactats and reppelents. 2nd ed. Marcel Dekker Inc., New York, Basel.
  11. Kovalchuk N.M., Trybala A., Starov V., Matar O., Ivanova N. (2014) Fluoro- vs hydrocarbon surfactants: why do they differ in wetting performance? Advances in Col-loid and Interface Science, 210, 65-71.
  12. Krafft M.P., Riess J.G. (2009) Chemistry, physical chemistry, and uses of molecular fluorocarbon-hydrocarbon diblocks, triblocks and related compounds - unique "apolar" components for self-assembled colloid and interface engineering. Chemical Reviews, 109, 1714-1792.
  13. Kunieda H., Shinoda K. (1976) Krafft points, critical micelle concentrations, surface tension, and solubilizing power of aqueous solutions of fluorinated surfactants. Journal of Physical Chemistry, 80, 2468-2470.
  14. Kunio T., Kenji K., Toshio N., Masahiro I., Misho S. (1997) Critical micelle concen-trations of perfluoroalkanesulfonate salts in aqueous solution. Journal of Japan Oil Chemists Society, 46, 209-212.
  15. La Mesa C., Sesta B. (1987) Micelles in perfluorinated surfactant solutions. Journal of Physical Chemistry, 91, 1450-1454.
  16. Li Y., Xu G., Luan Y., Yuan S., Xin X. (2005) Property prediction of surfactant by quantitative structure-property relationship: Krafft point and cloud point. Journal of Dispersion Science and Technology, 26, 799-808.
  17. Lin B., McCormick, A.V., Ted Davis H., Strey R. (2005) Solubility of sodium soaps in aqueous salt solutions. Journal of Colloid and Interface Science, 291, 543-549.
  18. Monduzzi M. (1998) Self-assembly in fluorocarbon surfactant systems. Current Opi-nion in Colloid & Interface Science, 3 (5), 467-477.
  19. Moroi Y., Takeuchi M., Yoskida M., Yamauchi A. (1988) Micelle formation of lithium 1-perfluoroundecanoate. Journal of Colloid and Interface Science, 197, 221-229.
  20. Negin C., Ali S., Xie Q. (2017) Most common surfactants employed in chemical en-hanced oil recovery. Petroleum, 3, 197-211.
  21. Przondo J. (2010) Związki powierzchniowo czynne i ich zastosowanie w produktach chemii gospodarczej (Surface active agents and their application in household chemistry products). 2nd ed. Wydawnictwo Politechniki Radomskiej, Radom (in Polish).
  22. Rao N.S., Baker B.E. (1994) Textile finishes and fluorosurfactants. In: Banks R.E., Smart B.E., Tallow J.C. (eds.) Organofluorine chemistry. Priciple and commercial applications. Springer Science+Business Media, LLC, New York.
  23. Rosen M.J, Kunjappu J.T. (2012) Surfactants and interfacial phenomena. 4th ed., John Wiley and Sons Inc., Hoboken, New Jersey.
  24. Samakande A., Hartmann P.C., Sanderson R.D. (2006) Synthesis and characterization of new cationic quaternary ammonium polymerizable surfactants. Journal of Colloid and Interface Science, 296, 316-323.
  25. Shinoda K. (1981) Criteria for micellar dissolution. Journal of Physical Chemistry, 85, 3311-3312.
  26. Shinoda K., Hato M., Hayashi T. (1972) The physicochemical properties of aqueous solutions of fluorinated surfactants. Journal of Physical Chemistry, 76, 909-914.
  27. Talhout R. (2003) Aggregation behaviour of p-n-alkylbenzamidinium chloride surfactants. In: Understanding enzymic binding affinity: Thermodynamics of binding of benzamidinium chloride inhibitors to trypsin. Chapter 6. University of Groningen, Groningen, pp. 119-144.
  28. Wang K., Karlsson G., Almgren M., Asakawa T. (1999) Aggregation behavior of ca-tionic fluorosurfactants in water and salt solutions. A cryoTEM survey. Journal of Physical Chemistry B, 103 (43), 9237-9246.
  29. Weil J.K., Smith F.S., Stirton A.J., Bistline R.G.Jr. (1963) Long chain alkanesulfonates and 1-hydroxy-2-alkanesulfonates: Structure and property relations. Journal of American Oil Chemists' Society, 40: 538-544.
  30. Zieliński R. (2017) Surfaktanty, budowa, właściwości, zastosowania (Surfactants: stru-cture, properties, applications). 3rd ed. Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu (in Polish).
  31. Zieliński R. (2019) Krafft point of cationic and zwitterionic surfactants in aqueous solutions. Polish Joournal of Commodity Science, 4 (61), 48-58.
Cited by
Show
ISSN
1733-747X
Language
eng
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu