BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Włodarska Katarzyna (Poznań University of Economics and Business), Sikorska Ewa (Poznań University of Economics and Business)
Title
Evaluation of Sensory Properties of Apple Juice Using Near Infrared Spectroscopy and Chemometrics
Ocena właściwości sensorycznych soku jabłkowego z zastosowaniem spektroskopii w bliskiej podczerwieni i chemometrii
Source
Towaroznawcze Problemy Jakości, 2021, nr 2, s. 42-49, tab., rys., bibliogr. 20 poz.
Polish Journal of Commodity Science
Keyword
Przetwory owocowe, Badania towaroznawcze, Badania sensoryczne, Towaroznawstwo żywności
Processed fruits, Commodity research, Sensory research, Food commodities
Note
summ., streszcz.
Grant 2016/23/B/NZ9/03591 from the National Science Centre, Poland, is gratefully acknowledged.
Abstract
Atrybuty sensoryczne są ważnymi czynnikami wpływającymi na akceptację żywności przez konsumentów. Konwencjonalnie są one określane przez panel ekspertów przy użyciu czasochłonnych i kosztownych metod sensorycznych. Celem pracy było opracowanie szybkiej i efektywnej metody przewidywania słodkiego i kwaśnego smaku soku jabłkowego. Widma w bliskiej podczerwieni (NIR) zarejestrowano dla komercyjnych soków jabłkowych. Intensywność smaku słodkiego i kwaśnego oceniał przeszkolony panel sensoryczny. Do analizy zależności pomiędzy parametrami sensorycznymi a widmami NIR soku jabłkowego wykorzystano regresję cząstkowych najmniejszych kwadratów (PLS). Uzyskane wyniki wykazują możliwość wykorzystania spektroskopii NIR do przewidywania smaku słodkiego i kwaśnego soku jabłkowego. (abstrakt oryginalny)

Sensory attributes are important drivers of consumer acceptance of food. They are conventionally determined by expert panel using time- and cost-consuming methods. The aim of the study was the development of fast and effective method for prediction sweet and sour flavour of apple juice. Near infrared (NIR) spectra were recorded for commercial apple juices. The intensities of sweet and sour flavour were evaluated by trained sensory panel. The partial least squares (PLS) regression was used to analyse the relationship between sensory parameters and NIR spectra of apple juice. The obtained results demonstrated the potential of NIR spectroscopy for prediction the sweet and sour flavour of apple juice. (original abstract)
Accessibility
The Main Library of the Cracow University of Economics
Bibliography
Show
  1. Jaros D ., T hamke I ., R addatz H ., R ohm H . ( 2009) S ingle-cultivar cloudy juice made from table apples: An attempt to identify the driving force for sensory preference. European Food Research and Technology, 229 (1), 51-61.
  2. Rødbotten M., Martinsen B.K., Borge G.I., Mortvedt H.S., Knutsen S.H., Lea P., Naes T. (2009) A cross-cultural study of preference for apple juice with different sugar and acid contents. Food Quality and Preference, 20 (3), 277-284.
  3. Halagarda M., Suwala G. (2017) Sensory optimization in new food product development: A case study of Polish apple juice. Italian Journal of Food Science, 30 (2), 317-335.
  4. Smyth H., Cozzolino D. (2013) Instrumental methods (spectroscopy, electronic nose, and tongue) as tools to predict taste and aroma in beverages: Advantages and limitations. Chemical Reviews, 113 (3), 1429-1440.
  5. Abu-Khalaf, Bennedsen B.S. (2004) Near infrared (NIR) technology and multivariate data analysis for sensing taste attributes of apples. International Agrophysics, 18 (3), 203-211.
  6. Nicolaï B.M., Beullens K., Bobelyn E., Peirs A., Saeys W., Theron K.I., Lammertyn J. (2007) Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46 (2), 99-118.
  7. Magwaza L.S., Opara U.L., Nieuwoudt H., Cronje P.J.R., Saeys W., Nicolaï B. (2012) NIR spectroscopy applications for internal and external quality analysis of citrus fruit-a review. Food and Bioprocess Technology, 5 (2), 425-444.
  8. Chapman J., Elbourne A., Truong V.K., Newman L., Gangadoo S., Rajapaksha Pathirannahalage P., et al. (2019) Sensomics - from conventional to functional nir spectroscopy - shining light over the aroma and taste of foods. Trends in Food Science & Technology, 91, 274-281.
  9. Ncama K., Opara U.L., Tesfay S.Z., Fawole O.A., Magwaza L.S. (2017) Application of VIS/NIR spectroscopy for predicting sweetness and flavour parameters of 'Valencia' orange (Citrus Sinensis) and 'Star Ruby' grapefruit (Citrus x paradisi Macfad). Journal of Food Engineering, 193, 86-94.
  10. Ferrer-Gallego R., Hernández-Hierro J.M., Rivas-Gonzalo J.C., Escribano-Bailón M.T. (2013) Evaluation of sensory parameters of grapes using near infrared spectroscopy. Journal of Food Engineering, 118 (3), 333-339.
  11. Cayuela J.A., Puertas B., Cantos-Villar E. (2017) Assessing wine sensory attributes using VIS/NIR. European Food Research and Technology, 243 (6), 941-953.
  12. Ouyang Q., Chen Q., Zhao J. (2016) Intelligent sensing sensory quality of Chinese rice wine using near infrared spectroscopy and nonlinear tools. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 154, 42-46.
  13. Esteban-Díez I., González-Sáiz J.M., Pizarro C. (2004) Prediction of sensory properties of espresso from roasted coffee samples by near-infrared spectroscopy. Analytica Chimica Acta, 525 (2), 171-182.
  14. Chen Q., Chen M., Liu Y., Wu J., Wang X., Ouyang Q., Chen X. (2018) Application of FT-NIR spectroscopy for simultaneous estimation of taste quality and taste-related compounds content of black tea. Journal of Food Science and Technology, 55 (10), 4363-4368.
  15. Mehinagic E., Royer G., Bertrand D., Symoneaux R., Laurens F., Jourjon F. (2003) Relationship between sensory analysis, penetrometry and visible-NIR spectroscopy of apples belonging to different cultivars. Food Quality and Preference, 14 (5), 473-484.
  16. Włodarska K., Pawlak-Lemańska K., Sikorska E. (2019) Prediction of key sensory attributes of apple juices by multivariate analysis of their physicochemical profiles. British Food Journal, 121 (10), 2429-2441.
  17. Wold S., Sjöström M., Eriksson L. (2001) PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58 (2), 109-130.
  18. Westad F., Martens H. (2000) Variable selection in near infrared spectroscopy based on significance testing in partial least squares regression. Journal of Near Infrared Spectroscopy, 8 (2), 117-124.
  19. Włodarska K., Khmelinskii I., Sikorska E. (2018) Evaluation of quality parameters of apple juices using near-infrared spectroscopy and chemometrics. Journal of Spectroscopy, 2018, 5191283.
  20. Wang H ., Peng J ., Xie C ., Bao Y ., He Y . ( 2015) Fruit quality evaluation using spectroscopy technology: A review. Sensors, 15 (5), 11889-11927.
Cited by
Show
ISSN
1733-747X
Language
eng
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu