BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Mercik Aleksander (Wrocław University of Economics and Business, Poland), Cupriak Daniel (Wrocław University of Economics and Business)
Title
Comparison of Crypto-Assets Market Risk Proxies
Analiza ryzyka rynkowego na rynku kryptoaktywów. Porównanie indeksów cyfrowych aktywów
Source
Nauki o Finansach / Uniwersytet Ekonomiczny we Wrocławiu, 2021, vol. 26, nr 1, s. 56-72, rys., tab., bibliogr. 51 poz.
Financial Sciences / Uniwersytet Ekonomiczny we Wrocławiu
Keyword
Kryptowaluty, Ryzyko, Metodyka wyceny, Wycena aktywów kapitałowych
Cryptocurrencies, Risk, Valuation methodologies, Capital asset valuation
Note
JEL Classification: G11, G10, G14, F31, G12
streszcz., summ.
The research was carried out under the Scientific and Research Excellence Program - INTEREKON "Regional Excellence Initiative" of the Ministry of Science and Higher Education. The project title is: "Applications of blockchain technology: the financial analysis of real applications based on functional and sector criteria."
Abstract
Na początku 2021 r. kapitalizacja rynku kryptoaktywów przekroczyła 1,5 bln USD, a na świecie funkcjonowało ponad 300 giełd, na których można było handlować ponad 8 tys. tokenów. W ramach badań związanych z dojrzałymi segmentami rynku finansowego (np. rynek akcji w Stanach Zjednoczonych) naukowcy i praktycy od kilkudziesięciu lat starają się zidentyfikować kluczowe czynniki ryzyka, dzięki którym możliwe jest wyjaśnienie premii za ryzyko kapitałowe inwestycji w daną klasę aktywów. W ostatnich latach wzrasta liczba badaczy próbujących zidentyfikować te czynniki dla kryptoaktywów. Celem niniejszego artykułu była analiza popularnych indeksów kryptoaktywów i zidentyfikowanie tych, które mogą być wykorzystane jako proxy portfela rynkowego do oszacowania wspomnianej premii za czynniki ryzyka. Wyniki badań wskazują, że czynnik ryzyka rynkowego jest istotnym elementem badanego rynku, a indeksami, które najlepiej go odzwierciedlają, są indeks składający się ze wszystkich kryptoaktywów ważonych kapitalizacją oraz Coin100, który zawiera tylko 100 największych kryptoaktywów (abstrakt oryginalny)

In early 2021, the cryptoasset market capitalization exceeded $1.5 trillion, and there were more than 300 exchanges in the world where over 8,000 tokens could be traded. As part of research related to mature segments of the financial market (e.g. the stock market in the United States), scientists and practitioners have been trying to identify key risk factors for several decades, thanks to which it is possible to explain the equity risk premium for an investment in a given asset class. In recent years, there have been an increasing number of researchers trying to identify these factors for cryptoassets. The aim of this article was to analyse popular cryptoasset indices in order to identify those that can be used as a proxy of the market portfolio in order to estimate this risk factor premium. The research results indicate that the market risk factor is an important element of the market under study, and the indices that best reflect it are an index consisting of all cryptoassets weighted by capitalization and Coin100 which contains only the 100 largest cryptoassets.(original abstract)
Accessibility
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice
The Main Library of the Wroclaw University of Economics
Full text
Show
Bibliography
Show
  1. Bariviera, A. F. (2017). The inefficiency of Bitcoin revisited: A dynamic approach. Econ. Lett., (161), 1-4. doi.org/10.1016/j.econlet.2017.09.013
  2. Baur, D. G., Hong, K., & Lee, A. D. (2018). Bitcoin: Medium of exchange or speculative assets? J. Int. Financ. Mark. Inst. Money, (54), 177-189. doi.org/10.1016/j.intfin.2017.12.004
  3. Białkowski, J. (2020). Cryptocurrencies in institutional investors' portfolios: Evidence from industry stop-loss rules. Econ. Lett., (191), 108834. doi.org/10.1016/j.econlet.2019.108834
  4. Borri, N., & Shakhnov, K. (2018). The cross-section of cryptocurrency returns. SSRN Electron. J. doi. org/10.2139/ssrn.3241485
  5. Bouri, E., Molnár, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier? Finance Res. Lett., (20), 192-198. doi. org/10.1016/j.frl.2016.09.025
  6. Cheah, E.-T., Fry, J., 2015. Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of bitcoin. Econ. Lett., (130), 32-36. doi.org/10.1016/j.econlet.2015.02.029
  7. Chiah, M., Chai, D., Zhong, A., & Li, S. (2016). A better model? An empirical investigation of the Fama-French five-factor model in Australia: Empirical Tests on the Five-factor Model. International Review of Finance, 16(4), 595-638. https://doi.org/10.1111/irfi.12099
  8. Coelho, D. M. C. (2020). Application of the Fama French three-factor model to the cryptocurrency and token markets. Lisbon: Universidade Católica Portuguesa.
  9. Corbet, S., Lucey, B., & Yarovaya, L. (2017). Datestamping the Bitcoin and Ethereum bubbles. Finance Res. Lett., (26), 81-88. doi.org/10.1016/j.frl.2017.12.006
  10. Corbet, S., Meegan, A., Larkin, C., Lucey, B., & Yarovaya, L. (2018). Exploring the dynamic relationships between cryptocurrencies and other financial assets. Econ. Lett., (165), 28-34. doi. org/10.1016/j.econlet.2018.01.004
  11. Crescent Crypto Market Index. (n.d.). Crescent Crypto. Retrieved 18 February 2021 from https://www. crescentcrypto.com/cryptocurrency-market-index/
  12. Crypto200 Index by Solactive. (n.d.). CoinMarketCap. Retrieved 18 February 2021 from https://coinmarketcap.com/indices/
  13. Czapiewski, L. (2016). Performance of the Fama-French five factor model - the case of the Polish capital market. Zesz. Nauk. Uniw. Szczec. Finanse Rynki Finans. Ubezpieczenia, (4), 71-83. doi.org/10.18276/frfu.2016.4.82/2-05
  14. Czapkiewicz, A., & Skalna, I. (2010). The CAPM and the Fama-French models in the Warsaw Stock Exchange. Przegląd Stat., (57), 128-141.
  15. Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators of autoregressive time series with a unit root. J. Am. Stat. Assoc., (74), 427-431.
  16. Dwyer, G. P. (2015). The economics of Bitcoin and similar private digital currencies. J. Financ. Stab., (17), 81-91. doi.org/10.1016/j.jfs.2014.11.006
  17. Dyhrberg, A. H. (2016). Hedging capabilities of bitcoin. Is it the virtual gold? Finance Res. Lett., (16), 139-144. doi.org/10.1016/j.frl.2015.10.025
  18. Fabozzi, F. J., & Wang, J. (2016). What difference do new factor models make in portfolio allocation? SSRN Electron. J. doi.org/10.2139/ssrn.2752822
  19. Fama, E., & French, K. (1992). The cross-section of expected stock returns. J. Finance, (47), 427-465.
  20. Fama, E. F., & French, K. R. (2013). A Four-Factor model for the size, value, and profitability patterns in stock returns. SSRN Electron. J.. doi.org/10.2139/ssrn.2287202
  21. Fama, E. F., & French, K. R. (2015). International tests of a five-factor asset pricing model. SSRN Electron. J. doi.org/10.2139/ssrn.2622782
  22. Fanning, K., & Centers, D. P. (2016). Blockchain and its coming impact on financial services. J. Corp. Account. Finance, (27), 53-57. doi.org/10.1002/jcaf.22179
  23. Gandal, N., Hamrick, J., Moore, T., & Oberman, T. (2018). Price manipulation in the Bitcoin ecosystem. J. Monet. Econ., (95), 86-96. doi.org/10.1016/j.jmoneco.2017.12.004
  24. Iansiti, M., & Lakhani, K. (2017). The truth about blockchain. Harv. Bus. Rev, (95-1), 118-127.
  25. Jajuga, K., & Jajuga, T. (2004). Inwestycje, Instrumenty finansowe, aktywa niefinansowe, ryzyko finansowe, inżynieria finansowa. Warszawa: Wydawnictwo Naukowe PWN.
  26. Kowerski, M. (2008). Trójczynnikowy model Famy i Frencha dla Giełdy Papierów Wartościowych w Warszawie. Przegląd Stat., (55), 131-148.
  27. Larios-Hernández, G. J. (2017). Blockchain entrepreneurship opportunity in the practices of the unbanked. Bus. Horiz., (60), 865-874. doi.org/10.1016/j.bushor.2017.07.012
  28. Li, T., Shin, D., & Wang, B. (2018). Cryptocurrency pump-and-dump schemes. SSRN Electron. J. doi. org/10.2139/ssrn.3267041
  29. Liu, Y., & Tsyvinski, A. (2018). Risks and returns of cryptocurrency (National Bureau of Economic Research, Working Paper Series 24877). doi.org/10.3386/w24877
  30. Liu, Y., Tsyvinski, A., & Wu, X. (2019). Common risk factors in cryptocurrency (National Bureau of Economic Research, Working Paper Series 25882). doi.org/10.3386/w25882
  31. Long, H., Zaremba, A., Demir, E., Szczygielski, J. J., & Vasenin, M. (2020). Seasonality in the crosssection of cryptocurrency returns. Finance Res. Lett., (35), 101566. doi.org/10.1016/j.frl.2020.101566
  32. Markowitz, H. (1952). Portfolio Selection. J. Finance, (7), 77-91.
  33. Mercik, A., & Cupriak, D. (2019). Ryzyko systematyczne na rynku tokenów cyfrowych. Strategie interesariuszy na rynku finansowym (pp. 51-62). Warszawa: Wydawnictwo SGGW.
  34. Nadarajah, S., & Chu, J. (2017). On the inefficiency of Bitcoin. Econ. Lett., (150), 6-9. doi.org/10.1016/j.econlet.2016.10.033
  35. Nichol, E., & Dowling, M. M. (2014). Profitability and investment factors for UK asset pricing models. SSRN Electron. J. doi.org/10.2139/ssrn.2511166
  36. Proposal for a Regulation of the European Parliament and of the Council on markets in crypto-assets, and amending Directive (EU) 2019/1937.
  37. Razali, N., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Datling tests. J. Stat. Model. Anal., (2), 21-33.
  38. Rivin, I., & Scevola, C. (2018). The CCI30 Index. Retrieved from https://arxiv.org/abs/1804.06711
  39. Schwartzkopff, D., Schwartzkopff, L., Botha, R., Finlayson, M., & Cronje, F. (2017). CRYPTO20: The First Tokenized Cryptocurrency Index Fund.
  40. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, (52), 591. doi.org/10.2307/2333709
  41. Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. J. Finance, (19), 425. doi.org/10.2307/2977928
  42. Soto de, H. (2017). A tale of two civilizations in the era of Facebook and blockchain. Small Business Economics, 49(4), 729-739. doi.org/10.1007/s11187-017-9949-4
  43. Tapscott, D., & Tapscott, A. (2017). How blockchain will change organization.
  44. Treynor, J. (1962). Toward a theory of market value of risky assets. In R. Korajczyk (Ed.), Asset pricing and portfolio performance: Models, Strategy and Performance Metrics (Unpublished manuscript Final version published in 1999, pp. 15-22). London: Risk Books.
  45. Trimborn, S., & Härdle, W. K. (2018). CRIX an index for cryptocurrencies. J. Empir. Finance, (49), 107-122. doi.org/10.1016/j.jempfin.2018.08.004
  46. Underwood, S. (2016). Blockchain beyond bitcoin. Commun. ACM, (59), 15-17. doi.org/10.1145/2994581
  47. Urbański, S. (2007). Time-cross-section factors of rates of return changes on the Warsaw Stock Exchange. Przegląd Stat., (54), 94-121.
  48. Urquhart, A. (2016). The inefficiency of bitcoin. Econ. Lett., (148), 80-82. doi.org/10.1016/j.econlet.2016.09.01
  49. Waszczuk, A. (2013). A risk-based explanation of return patterns - vidence from the Polish stock market. Emerg. Mark. Rev., (15), 186-210. doi.org/10.1016/j.ememar.2012.12.002
  50. Zaremba, A. (2014). Cross-sectional asset pricing models for the Polish market. SSRN Electron. J. doi. org/10.2139/ssrn.2396884
  51. Zhang, W., & Li, Y. (2020). Is idiosyncratic volatility priced in cryptocurrency markets? Res. Int. Bus. Finance, (54), 101252. doi.org/10.1016/j.ribaf.2020.101252
Cited by
Show
ISSN
2080-5993
Language
eng
URI / DOI
http://dx.doi.org/10.15611/fins.2021.1.04
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu