BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Powar Sudhir K. (Shivaji University, Department of Geography, Kolhapur, Maharashtra, India), Patil Abhijit S. (Shivaji University, Department of Geography, Kolhapur, Maharashtra, India)
Title
An Evaluation of Pixel-based and Object-based Classification Methods for Land Use Land Cover Analysis Using Geoinformatic Techniques
Source
Geomatics and Environmental Engineering, 2022, nr 16/2, s. 61-75, fot., rys., bibliogr. 27 poz.
Keyword
Grunty rolne, Klasyfikacja, Topografia
Arable land, Classification, Topography
Note
summ.
Abstract
Land use land cover (LULC) classification is a valuable asset for resource managers; in many fields of study, it has become essential to monitor LULC at different scales. As a result, the primary goal of this work is to compare and contrast the performance of pixel-based and object-based categorization algorithms. The supervised maximum likelihood classifier (MLC) technique was employed in pixel-based classification, while multi-resolution segmentation and the standard nearest neighbor (SNN) algorithm were employed in object-based classification. For the urban and suburban parts of Kolhapur, the Resourcesat-2 LISS-IV image was used, and the entire research region was classified into five LULC groups. The performance of the two approaches was examined by comparing the classification results. For accuracy evaluation, the ground truth data was used, and confusion matrixes were generated. The overall accuracy of the object-based methodology was 84.66%, which was significantly greater than the overall accuracy of the pixel-based categorization methodology, which was 72.66%. The findings of this study show that object-based classification is more appropriate for high-resolution Resourcesat-2 satellite data than MLC of pixel-based classification.(original abstract)
Full text
Show
Bibliography
Show
  1. Khan G.A., Khan S.A., Zafar N.A., Islam S., Ahmad F., Rehman M., Ullah M.: A review of different approaches of land cover mapping. Life Science Journal, vol. 9, 2012, pp. 1023-1032.
  2. Rajan K., Shibasaki R.: A GIS based integrated land use/cover change model to study agricultural and urban land use changes. Paper presented at the 22nd Asian Conference on Remote Sensing, 5-9 November 2001, Singapore.
  3. Memarian H., Balasundram S.K., Khosla R.: Comparison between pixeland object-based image classification of a tropical landscape using Système Pour observation de la Terre-5 imagery. International Journal of Applied Remote Sensing, vol. 7, 2013, 073512. https://doi.org/10.1117/1.JRS.7.073512.
  4. Ouattara T., Gwyn Q.H.J., Dubois J.-M.M.: Evaluation of the runoff potential in high relief semi-arid regions using remote sensing data: application to Bolivia. International Journal of Remote Sensing, vol. 25, 2004, pp. 423-435. https://doi.org/10.1080/0143116031000102421.
  5. Gao Y., Mas J.-F., Maathuis B.H.P., Zhang X., van Dijk P.M.: Comparison of pixel-based and object-based image classification approaches - a case study in a coal fire area, Wuda, Inner Mongolia, China. International Journal of Remote Sensing, vol. 27(18), 2006, pp. 4039-4055. https://doi.org/10.1080/01431160600702632.
  6. Enderle D., Weih R.C., Jr.: Integrating supervised and unsupervised classification methods to develop a more accurate land cover classification. Journal of the Arkansas Academy of Science, vol. 59, 2005, pp. 65-73. https://scholarworks.uark.edu/jaas/vol59/iss1/10.
  7. Zhou Q., Robson M.: Automated rangeland vegetation cover and density estimation using ground digital images and a spectral-contextual classifier. International Journal of Remote Sensing, vol. 22, 2001, pp. 3457-3470. https://doi.org/10.1080/01431160010004504.
  8. Pizzolato Angelo N., Haertel V.: On the application of Gabor filtering in super-vised image classification. International Journal of Remote Sensing, vol. 24, 2003, pp. 2167-2189. https://doi.org/10.1080/01431160210163146.
  9. Campagnolo M.L., Cerdeira J.O.: Contextual classification of remotely sensed images with integer linear programming. [in:] Tavares J.M.R.S., Natal Jorge R.M. (eds.), Computational Modelling of Objects Represented in Images: Fundamentals, Methods, and Applications: Proceedings of the International Symposium CompIMAGE 2006 (Coimbra, Portugal, 20-21 October 2006), Taylor & Francis, London 2007, pp. 123-128.
  10. Gao Y., Mas J.F.: A comparison of the performance of pixel-based and object-based classifications over images with various spatial resolutions. [in:] Hay G.J., Blaschke T., Marceau D. (eds.), GEOBIA 2008 - Pixels, Objects, Intelligence: GEOgraphic Object Based Image Analysis for the 21st Century, August 5-8, 2008, Calgary, Alberta, Canada, ISPRS Archives, vol. XXXVIII-4/C1, pp. 1-6.
  11. Van de Voorde T., De Genst W., Canters F., Stephenne N., Wolff E., Binard M.: Extraction of land use/land coverrelated information from very high resolution data in urban and suburban areas. [in:] Goossens R. (ed.), Remote Sensing in Transition: Proceedings of the 23rd EARSeL Symposium, Ghent, Belgium 2003, Millpress Science Publishers, Rotterdam 2004, pp. 237-244.
  12. Blaschke T.: Object-based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 65(1), 2010, pp. 2-16. https://doi.org/10.1016/j.isprsjprs.2009.06.004.
  13. Baatz M., Schäpe A.: Multi-resolution segmentation: Anoptimization approach for high quality multi-scale segmentation. [in:] Strobl J., Blaschke T., Griesebner G. (Hrsg.), Angewandte geographische Informationsverarbeitung XII: Beiträge zum AGIT-Symposium Salzburg 2000, Wichmann, Heidelberg 2000, pp. 12-23.
  14. Blaschke T., Hay G.J., Kelly M., Lang S., Hofmann P., Addink E., Feitosa R.Q., van der Meer F., van der Werff H., van Coillie F., Tiede D.: Geographic object-based image analysis - towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 87, 2014. pp. 180-191. https://doi.org/10.1016/j.isprsjprs.2013.09.014.
  15. Martha T.R., Kerle N., Jetten J., van Westen C.J., Vinod Kumar K.: Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology, vol. 116, 2010, pp. 24-36. https://doi.org/10.1016/j.geomorph.2009.10.004.
  16. Stumpf A., Kerle N.: Object-oriented mapping of landslides using Random Forests. Remote Sensing of Environment, vol. 115, 2011, pp. 2564-2577. https://doi.org/10.1016/j.rse.2011.05.013.
  17. Holbling D., Füreder P., Antolini F., Cigna F., Casagli N., Lang S.: A semiautomated object-based approach for landslide detection validated by persistent scatterer interferometry measures and landslide inventories. Remote Sensing, vol. 4, 2012, pp. 1310-1336. https://doi.org/10.3390/rs4051310.
  18. Kurtz C., Stumpf A., Malet J.P., Gançarski P., Puissant A., Passat N.: Hierarchical extraction of landslides from multiresolution remotely sensed optical images. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 87, 2014, pp. 122-136. https://doi.org/10.1016/j.isprsjprs.2013.11.003.
  19. Shackelford A.K., Davis C.H.: A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas. IEEE Transactions on Geoscience and Remote Sensing, vol. 41, 2003, pp. 2354-2364. https://doi.org/10.1109/TGRS.2003.815972.
  20. Cambell J.B., Wynne R.H.: Introduction to Remote Sensing-Accuracy Assessment. 5th ed. The Guilford Press, New York - London 2011.
  21. Dean A.M., Smith G.M.: An evaluation of per-parcel land cover mapping using maximum likelihood class probabilities. International Journal of Remote Sensing, vol. 24(14), 2003, pp. 2905-2920. https://doi.org/10.1080/01431160210155910.
  22. Rahman M.R., Saha S.K.: Multi-resolution Segmentation for Object-based Classification and Accuracy Assessment of Land Use/Land Cover Classification Using Remotely Sensed Data. Journal of the Indian Society of Remote Sensing, vol. 36, 2008, pp. 189-201. https://doi.org/10.1007/s12524-008-0020-4.
  23. Mather P.: Computer Processing of Remotely-Sensed Images: An Introduction. Wiley, Chichester 1999.
  24. Blaschke T., Strobl J.: What's wrong with pixels? Some recent development interfacing remote sensing and GIS. GIS - Zeitschrift für Geoinformationssysteme, vol. 14(6), 2001, pp. 12-17.
  25. Verbyla D.L.: Practical GIS Analysis. Taylor & Francis, London - New York 2002.
  26. Jensen J.R.: Introductory Digital Image Processing: A Remote Sensing Perspective. Prentice Hall, New Jersey 1996.
  27. Giada S., De Groeve T., Ehrlich D., Soille P.: Information extraction from very high resolution satellite imagery over Lukole refugee camp, Tanzania. International Journal of Remote Sensing, vol. 24, 2003, pp. 4251-4266. https://doi.org/10.1080/0143116021000035021.
Cited by
Show
ISSN
2300-7095
Language
eng
URI / DOI
http://dx.doi.org/10.7494/geom.2022.16.2.61
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu