BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Nzelibe Ifechukwu Ugochukwu (Federal University of Technology, Akure, Nigeria), Ojediran Daniel Damilola (Federal University of Technology, Akure, Nigeria), Moses Mefe (Ahmadu Bello University, Nigeria)
Title
Geospatial Assessment and Mapping of Suitable Sitesfor a Utility-scale Solar PV Farm in Akure South, Ondo State, Nigeria
Source
Geomatics and Environmental Engineering, 2022, nr 16/4, s. 79-102, rys., tab., bibliogr. 48 poz.
Keyword
Systemy fotowoltaiczne, Energia elektryczna, Energia odnawialna, Kartografia, Energia
Photovoltaic systems, Electric power, Renewable energy, Cartography, Energy
Country
Nigeria
Nigeria
Abstract
Geospatial and multi-criteria decision-making techniques are applied to pro-cess and analyse datasets for determining suitable areas for multiple utility- scale solar photovoltaic farms in the city of Akure, Ondo State, southwestern Nigeria. Data processed include local electric power distribution system data, Shuttle Radar Topographic Mission elevation data, Landsat 8 and solar global horizontal irradiance. Multi-criteria decision-making techniques adopted are the analytical hierarchy process, reclassification, and overlay. These techniques were carried out considering criteria for siting solar photovoltaic farms. Crite-ria considered in this study are climate, topography, economic, environmental impact operational and technical while sub-criteria are solar global horizontal irradiance, slope, proximity and land cover. The outcome of the study shows that the study area covering a total extent of ~33,200 ha, 15%, 8%, 13% and 64% are highly suitable, suitable, moderately suitable, and unsuitable respectively for siting utility-scale solar photovoltaic farms within the study area. The study reveals the potential of multiple utility-scale solar photovoltaic farms in the study area. However, the proportions of areas suitable for solar photovoltaic farms are quite lower compared to findings from similar studies conducted in northwestern Nigeria. The study recommends solar photovoltaic sources as an alternative energy source in and around the study area.(original abstract)
Full text
Show
Bibliography
Show
  1. Al-Ruzouq R., Shanableh A., Yilmaz A., Idris A., Mukherjee S., Khalil M., Barakat M. et al.: Dam Site Suitability Mapping and Analysis Using an Integrated GIS and Machine Learning Approach. Water (Basel), vol. 11, no. 9, 2019, 1880. https://doi.org/10.3390/w11091880.
  2. Al-Garni H.Z., Awasthi A.: Solar PV Power Plants Site Selection. [in:] Yahyaoui I. (ed.), Advances in Renewable Energies and Power Technologies. Volume 1: Solar and Wind Energies, Elsevier, 2018, pp. 57-75. https://doi.org/10.1016/B978-0-12-812959-3.00002-2.
  3. Alami Merrouni A., Elwali Elalaoui F., Ghennioui A., Mezrhab A., Mezrhab A.: A GIS-AHP combination for the sites assessment of large-scale CSP plants with dry and wet cooling systems. Case study: Eastern Morocco. Solar Energy, vol. 166, 2018, pp. 2-12. https://doi.org/10.1016/j.solener.2018.03.038.
  4. Arafat A.A., Patten I.E., Zwick P.D.: Site Selection and Suitability Modeling. [in:] 2010 ESRI International Uset Conference, paper 1106, 2010.
  5. Ayodele T.R., Ogunjuyigbe A.S.O., Odigie O., Jimoh A.A.: On the most suitable sites for wind farm development in Nigeria. Data in Brief, vol. 19, 2018, pp. 29-41. https://doi.org/10.1016/j.dib.2018.04.144.
  6. Chauhan N., Kumar V., Paliwal R.: Site Suitability Analysis of Water Harvesting Structure in Ghaggar River Basin Using Analytical Hierarchical Process and Geographical Information System Approach - A Case Study. Applied Ecology and Environmental Sciences, vol. 8, no. 6, 2020, pp. 402-407. https://doi.org/10.12691/aees-8-6-11.
  7. Comité Permanent Inter-états de Lutte contre la Sécheresse dans le Sahel (CILSS): Landscapes of West Africa: A Window on a Changing World. U.S. Geological Survey EROS, 47914 252nd St, Garretson, SD 57030, United States, 2016. https://edcintl.cr.usgs.gov/downloads/sciweb1/shared/wafrica/downloads/documents/Landscapes_of_West_Africa_Federal_Republic_of_Nigeria_en.pdf [access: 16.05.2022].
  8. Coruhlu Y.E., Solgun N., Baser V., Terzi F.: Revealing the solar energy potential by integration of GIS and AHP in order to compare decisions of the land use on the environmental plans. Land Use Policy, vol. 113, 2022, 105899. https://doi.org/10.1016/j.landusepol.2021.105899.
  9. Deveci M., Cali U., Kucuksari S., Erdogan N.: Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland. Energy, vol. 198, 2020, 117317. https://doi.org/10.1016/j.energy.2020.117317.
  10. Effat H.A., El-Zeiny A.M.: Geospatial modeling for selection of optimum sites for hybrid solar-wind energy in Assiut Governorate, Egypt. The Egyptian Journal of Remote Sensing and Space Science, vol. 25(2), 2022, pp. 627-637. https://doi.org/10.1016/j.ejrs.2022.03.005.
  11. Elboshy B., Alwetaishi M., Aly R.M.H., Zalhaf A.S.: A suitability mapping for the PV solar farms in Egypt based on GIS-AHP to optimize multi-criteria feasibility. Ain Shams Engineering Journal, vol. 13, no. 3, 2022, 101618. https://doi.org/10.1016/j.asej.2021.10.013.
  12. Fang H., Li J., Song W.: Sustainable site selection for photovoltaic power plant: An integrated approach based on prospect theory. Energy Conversion and Management, vol. 174, 2018, pp. 755-768. https://doi.org/10.1016/j.enconman.2018.08.092.
  13. GinkgoMaps: GinkgoMaps - Free Digital Maps. 2018. http://www.ginkgomaps.com [access: 16.05.2022].
  14. GobeleQ: De Aar solar power inauguration, focus on enriching communities. 2014. https://deaarsolar.co.za/de-aar-solar-power-inauguration-focus-enriching-communities/ [access: 16.05.2022].
  15. Goh H.H., Li C., Zhang D., Dai W., Shen Lim C., Kurniawan T.A., Chen Goh K.: Application of choosing by advantages to determine the optimal site for solar power plants. Scientific Reports, vol. 12, no. 1, 2022, 4113. https://doi.org/10.1038/s41598-022-08193-1.
  16. Günen M.A.: A comprehensive framework based on GIS-AHP for the installation of solar PV farms in Kahramanmaraş, Turkey. Renewable Energy, vol. 178, 2021, pp. 212-225. https://doi.org/10.1016/j.renene.2021.06.078.
  17. Habib S.M., El-Raie Emam Suliman A., al Nahry A.H., Abd El Rahman E.N.: Spatial modeling for the optimum site selection of solar photovoltaics power plant in the northwest coast of Egypt. Remote Sensing Applications: Society and Environment, vol. 18, 2020, 100313. https://doi.org/10.1016/j.rsase.2020.100313.
  18. Haddad B., Díaz-Cuevas P., Ferreira P., Djebli A., Pérez J.P.: Mapping concentrated solar power site suitability in Algeria. Renewable Energy, vol. 168, 2021, pp. 838-853. https://doi.org/10.1016/j.renene.2020.12.081.
  19. International Energy Agency: Solar Energy Perspectives. 2011. https://www.iea.org/reports/solar-energy-perspectives [access: 16.05.2022].
  20. International Finance Corporation: Utility-Scale Solar Photovoltaic Power Plants in Partnership: Project Developer's Guide. 2015. https://www.ifc.org/wps/wcm/connect/a1b3dbd3-983e-4ee3-a67b-cdc29ef900cb/IFC+Solar+Report_Web+_08+05.pdf?MOD=AJPERES&CVID=kZePDPG [access: 16.05.2022].
  21. Katkar V.V., Sward J.A., Worsley A., Zhang K.M.: Strategic land use analysis for solar energy development in New York State. Renewable Energy, vol. 173, 2021, pp. 861-875. https://doi.org/10.1016/j.renene.2021.03.128.
  22. Mary A.-A.: Optimal techno-economic potential and site evaluation for solar PV and CSP systems in Ghana. A geospatial AHP multi-criteria approach. Renewable Energy Focus, vol. 41, 2022, pp. 216-229. https://doi.org/10.1016/j.ref.2022.03.007.
  23. Mentis D., Welsch M., Nerini F.F., Broad O., Howells M., Bazilian M., Rogner H.: A GIS-based approach for electrification planning - A case study on Nigeria. Energy for Sustainable Development, vol. 29, pp. 142-150, 2015. https://doi.org/10.1016/j.esd.2015.09.007.
  24. Messaoudi D., Settou N., Negrou B., Rahmouni S., Settou B., Mayou I.: Site selection methodology for the wind-powered hydrogen refueling station based on AHP-GIS in Adrar, Algeria. Energy Procedia, vol. 162, 2019, pp. 67-76. https://doi.org/10.1016/j.egypro.2019.04.008.
  25. Momoh Z., Anuga J.A., Obidi A.J.: Implications of Poor Electricity Supply on Nigeria's National Development. Humanities and Social Sciences Letters, vol. 6, no. 2, pp. 31-40, 2018. http://doi.org/10.18488/journal.73.2018.62.31.40.
  26. National Bureau of Statistics: Nigerian Gross Domestic Product Report. 2021. https://www.nigerianstat.gov.ng/download/1241027 [access: 16.05.2022].
  27. Nebey A.H., Taye B.Z., Workineh T.G.: Site Suitability Analysis of Solar PV Power Generation in South Gondar, Amhara Region. Journal of Energy, vol. 2020, May 2020, 3519257. https://doi.org/10.1155/2020/3519257.
  28. Nebey A.H., Taye B.Z., Workineh T.G.: GIS-Based Irrigation Dams Potential Assessment of Floating Solar PV System. Journal of Energy, vol. 2020, May 2020, 1268493. https://doi.org/10.1155/2020/1268493.
  29. Njoku H.O.: Solar Photovoltaic Potential in Nigeria. Journal of Energy Engineering, vol. 140, no. 2, 2014, 04013020. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000145.
  30. Otabor O.: Ondo moves to break BEDC monopoly, gets monarchs' backing. TheStreet Journal, January 2, 2021 https://thestreetjournal.org/ondo-moves-to-break-bedc-monopoly-gets-monarchs-backing/ [access: 16.05.2022].
  31. Ozoegwu C.G., Akpan P.U.: Solar energy policy directions for safer and cleaner development in Nigeria. Energy Policy, vol. 150, 2021, 112141. https://doi.org/10.1016/j.enpol.2021.112141.
  32. Ragatoa D.S., Ogunjobi K.O., Okhimamhe A.A., Browne Klutse N.A., Lamptey B.L.: A predictive study of heat wave characteristics and their spatio-temporal trends in climatic zones of Nigeria. Modeling Earth Systems and Environment, vol. 4, no. 3, 2018, pp. 1125-1151. https://doi.org/10.1007/s40808-018-0480-7.
  33. Raji S.A.: Modelling Potential Sites for Solar PV Plants in Northwest Nigeria Using Geoinformation Tools. June 2017.
  34. Renewable and Sustainable Energy Reviews, vol. 81, 2018, pp. 2088-2103. https://doi.org/10.1016/j.rser.2017.06.021.
  35. Rios R., Duarte S.: Selection of ideal sites for the development of large-scale solar photovoltaic projects through Analytical Hierarchical Process - Geographic information systems (AHP-GIS) in Peru. Renewable and Sustainable Energy Reviews, vol. 149, 2021, 111310. https://doi.org/10.1016/j.rser.2021.111310.
  36. Royal Society of Chemistry: Energy. 2022. https://www.rsc.org/campaigning-outreach/global-challenges/energy/ [access: 16.05.2022].
  37. Saaty T.L.: Decision making with the analytic hierarchy process. International Journal of Services Sciences, vol. 1, no. 1, 2008, pp. 83-98.
  38. Spyridonidou S., Sismani G., Loukogeorgaki E., Vagiona D.G., Ulanovsky H., Madar D.: Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach. Energies (Basel), vol. 14, no. 3, 2021, 551. https://doi.org/10.3390/en14030551.
  39. Taye B.Z., Workineh T.G., Nebey A.H., Kefale H.A.: Rural electrification planning using Geographic Information System (GIS). Cogent Engineering, vol. 7, no. 1, 2020, 1836730. https://doi.org/10.1080/23311916.2020.1836730.
  40. Tazi G., Jbaihi O., Ghennioui A., Merrouni A.A., Bakkali M.: Estimating the Renewable Energy Potential in Morocco: solar energy as a case study. IOP Conference Series: Earth and Environmental Science, vol. 161, 2018, 012015. https://doi.org/10.1088/1755-1315/161/1/012015.
  41. Tekin S., Guner E.D., Cilek A., Unal Cilek M.: Selection of renewable energy systems sites using the MaxEnt model in the Eastern Mediterranean region in Turkey. Environmental Science and Pollution Research, vol. 28, no. 37, 2021, pp. 51405-51424. https://doi.org/10.1007/s11356-021-13760-6.
  42. United Nations: Population Division. 2017. https://population.un.org/wup/[access: 16.05.2022].
  43. United States Agency for International Development: Power Africa. 2020. https://www.usaid.gov/powerafrica [access: 16.05.2022].
  44. Vagiona D., Kamilakis M.: Sustainable Site Selection for Offshore Wind Farms in the South Aegean - Greece. Sustainability, vol. 10, no. 3, 2018, 749. https://doi.org/10.3390/su10030749.
  45. Villacreses G., Martínez-Gómez J., Jijón D., Cordovez M.: Geolocation of photovoltaic farms using Geographic Information Systems (GIS) with Multiple-criteria decision-making (MCDM) methods: Case of the Ecuadorian energy regulation. Energy Reports, vol. 8, 2022, pp. 3526-3548. https://doi.org/10.1016/j.egyr.2022.02.152.
  46. World Bank: Nigeria Urban Population 1960-2022. 2022.
  47. World Bank: Download solar resource maps and GIS data for 200+ countries and regions. © 2020 The World Bank, Source: Global Solar Atlas 2.0, Solar resource data: Solargis. https://solargis.com/maps-and-gis-data/download [access: 16.05.2022].
  48. Yushchenko A., de Bono A., Chatenoux B., Kumar Patel M., Ray N.: GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa
Cited by
Show
ISSN
2300-7095
Language
eng
URI / DOI
http://dx.doi.org/10.7494/geom.2022.16.4.79
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu