BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Głowienka Ewa (AGH University of Science and Technology Kraków, Poland), Zembol Nicole (SATIM, Krakow, Poland)
Title
Forest Community Mapping Using Hyperspectral (CHRIS/PROBA) and Sentinel-2 Multispectral Images
Source
Geomatics and Environmental Engineering, 2022, nr 16/4, s. 103-118, rys., tab., bibliogr. 44 poz.
Keyword
Przetwarzanie obrazu, Analiza obrazu, Uczenie maszynowe
Image processing, Image analysis, Machine learning
Abstract
The possibility to use hyperspectral images (CHRIS/PROBA) and multispec-tral images (Sentinel-2) in the classification of forest communities is assessed in this article. The pre-processing of CHRIS/PROBA image included: noise re-duction, radiometric correction, atmospheric correction, geometric correction. Due to MNF transformation the number of the hyperspectral image channels was reduced (to 10 channels) and smiling errors were removed. Sentinel-2 im-age (level 2A) did not require pre-processing. Three tree genera occurring in the study area were selected for the classification: pine (Pinus), alder (Alnus) and birch (Betula). Image classification was carried out with three methods: SAM (Spectral Angle Mapper), MTMF (Mixture Tuned Matched Filtering), SVM (Support Vector Machine). For the CHRIS/PROBA image, the algo-rithm SVM turned out to be the best. Its overall accuracy (OA) was 72%. The poorest result (OA = 52%) was for the MTMF classifier. In the classification of Sentinel-2 multispectral image the best result was for the MTMF method: OA = 82%, kappa coefficient 0.7. For other methods, the overall accuracy ex-ceeded 65%. Among the classified genera, the highest producer's accuracy was obtained for pine (PA = 96%), and the broad-leaf genera: alder and birch had PA ranging from 42% to 85%.(original abstract)
Full text
Show
Bibliography
Show
  1. Astola H., Häme T., Sirro L., Molinier M., Kilpi J.: Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sensing of Environment, vol. 223, 2019, pp. 257-273. https://doi.org/10.1016/j.rse.2019.01.019.
  2. Banskota A., Kayastha N., Falkowski M., Wulder M., Froese R., White J.: Forest monitoring using Landsat time series data: A review. Canadian Journal of Remote Sensing, vol. 40, no. 5, 2014, pp. 362-384. https://doi.org/10.1080/07038992.2014.987376.
  3. Barnsley M., Settle J., Cutter M., Lobb D., Teston F.: The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere. IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 7, 2004, pp. 1512-1520. https://doi.org/10.1109/TGRS.2004.827260.
  4. Bartkowiak P., Osińska-Skotak K.: Analiza możliwości wykorzystania obrazów hiperspektralnych HySpex do inwentaryzacji drzewostanów leśnych Puszczy Białowieskiej. Teledetekcja Środowiska, t. 55, 2016, pp. 24-44.
  5. Boardman J.: Leveraging the High Dimensionality of AVIRIS Data for Improved Sub-Pixel Target Unmixing and Rejection of False Positives: Mixture Tuned Match Filtering. [in:] Summaries of the Seventh JPL Airobrne Earth Science Workshop, vol. 1, 1998, pp. 53.
  6. Chrysafis I., Mallinis G., Siachalou S., Patias P.: Assessing the relationships between growing stock volume and sentinel-2 imagery in a mediterranean forest ecosystem. Remote Sensing Letters, vol. 8, 2017, pp. 508-517. https://doi.org/10.1080/2150704X.2017.1295479.
  7. Close O., Petit S., Beaumont B., Hallot E.: Evaluating the Potentiality of Sentinel-2 for Change Detection Analysis Associated to LULUCF in Wallonia, Belgium. Land, vol. 10, 2021, 55. https://doi.org/10.3390/land10010055.
  8. Dadon A., Mandelmilch M., Ben-Dor E., Sheffer E.: Sequential PCA-based Classification of Mediterranean Forest Plants using Airborne Hyperspectral Remote Sensing. Remote Sensing, vol. 11, 2019, 2800. https://doi.org/10.3390/rs11232800.
  9. Dalponte M., Ørka H.O., Gobakken T., Gianelle D., Næsset E.: Tree Species Classification in Boreal Forests with Hyperspectral Data. IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 5, 2013, pp. 2632-2645. https://doi.org/10.1109/TGRS.2012.2216272.
  10. Duca R., Del Frate F.: Hyperspectral and multiangle CHRIS-PROBA images for the generation of land cover maps. IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 10, 2008, pp. 2857-2866. https://doi.org/10.1109/TGRS.2008.2000741.
  11. Encyklopedia drzew. http://encyklopediadrzew.pl [access: 30.07.2021].
  12. ESA. https://earth.esa.int/eogateway/missions [access: 10.04.2021].
  13. Głowienka-Mikrut E.: Analiza porównawcza metod przetwarzania danych hiperspektralnych o zróżnicowanej dokładności. AGH, Kraków 2014 [Ph.D. thesis].
  14. Goodenough D., Bhogal A., Dyk A., Hollinger A., Mah Z., Niemann O., Pearlman J. et al.: Monitoring forests with Hyperion and ALI. [in:] IEEE International Geoscience and Remote Sensing Symposium, vol. 2, IEEE, Piscataway 2002, pp. 882-885. https://doi.org/10.1109/IGARSS.2002.1025717.
  15. Gómez-Chova L., Alonso L., Guanter L., Camps-Valls G., Calpe J., Moreno J.: Correction of systematic spatial noise in push-broom hyperspectral sensors: application to CHRIS/PROBA images. Applied Optics, vol. 47, no. 28, 2008, pp. F46-F60. https://doi.org/10.1364/AO.47.000F46.
  16. Green A., Berman M., Switzer P., Craig M.: A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, vol. 26, no. 1, 1988, pp. 65-74. https://doi.org/10.1109/36.3001.
  17. GUGIK. http://geoportal.gov.pl [access: 15.05.2021].
  18. Guanter L., Alonso L., Moreno J.: A method for the surface reflectance retrieval from PROBA/CHRIS data over land: Application to ESA SPARC campaigns. IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 12, 2005, pp. 2908-2917. https://doi.org/10.1109/TGRS.2005.857915.
  19. Gupta N., Milton E.J.: Quality Assessment of CHRIS/PROBA Image and Recommendation for Land Cover Classification. [in:] Proceedings of the Remote Sensing and Photogrammetry Society Annual Conference 2009, pp. 118-126.
  20. Hejmanowska B., Kramarczyk P., Głowienka E., Mikrut S.: Reliable Crops Classification Using Limited Number of Sentinel-2 and Sentinel-1 Images. Remote Sensing, vol. 13, no. 16, 2021, 3176. https://doi.org/10.3390/rs13163176.
  21. Hycza T., Stereńczak K., Bałazy R.: Potential use of hyperspectral data to classify forest tree species. New Zeland Journal of Forestry Science, vol. 48, 2018, pp. 1-13. https://doi.org/10.1186/s40490-018-0123-9.
  22. Immitzer M., Vuolo F., Atzberger C.: First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sensing, vol. 8(3), 2016, 166. https://doi.org/10.3390/rs8030166.
  23. Janssen F., van der Wel F.: Accuracy assessment of satellite derived land cover data: A review. Photogrammetric Engineering and Remote Sensing, vol. 60, 1994, pp. 419-426.
  24. Kayitakire F., Defourny P.: Forest type discrimination using multi-angle hyperspectral data. [in:] Proceedings 2nd CHRIS/PROBA Workshop, ESA SP, Frascati, Italy, 2004, 2004, pp. 72-84. http://hdl.handle.net/2078.1/76194.
  25. Knauer U., Von Rekowski C., Stecklina M., Krokotsch T., Pham Minh T., Hauffe V., Kilias D. et al.: Tree Species Classification Based on Hybrid Ensembles of a Convolutional Neural Network (CNN) and Random Forest Classifiers. Remote Sensing, vol. 11, 2019, 2788. https://doi.org/10.3390/rs11232788.
  26. Kokaly R., Despain D., Clark R., Livo K.: Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote Sensing of Environment, vol. 84, no. 3, 2003, pp. 437-456. https://doi.org/10.1016/S0034-4257(02)00133-5.
  27. Kruse F., Lefkoff A., Dietz J.: Expert System-Based Mineral Mapping in northern Death Valley, California/Nevada using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Environment, special issue on AVIRIS, vol. 44, 1993, pp. 309-336. https://doi.org/10.1016/0034-4257(93)90024-R.
  28. L3HARRIS. https://www.l3harrisgeospatial.com/docs [access: 11.04.2021].
  29. Lary D., Alavi A., Gandomi A., Walker A.: Machine learning in geosciences and remote sensing. Geoscience Frontiers, vol. 7, no. 1, 2016, pp. 3-10. https://doi.org/10.1016/j.gsf.2015.07.003.
  30. Laurin G., Puletti N., Hawthorne W., Liesenberg V., Corona P., Papale D., Chen Q., Valentini R.: Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sensing of Environment, vol. 176, 2016, pp. 163-176. https://doi.org/10.1016/j.rse.2016.01.017.
  31. Leckie D., Tinis S., Nelson T., Burnett C., Gougeon F., Cloney E., Paradine D.: Issues in species classification of trees in old growth conifer stands. Canadian Journal of Remote Sensing, vol. 31, 2005, pp. 175-190. https://doi.org/10.5589/m05-004.
  32. Markiet V., Mõttus M.: Estimation of boreal forest floor reflectance from airborne hyperspectral data of coniferous forests. Remote Sensing of Environment, vol. 249, 2020, 112018. https://doi.org/10.1016/j.rse.2020.112018.
  33. Modzelewska A., Kamińska A., Fassnacht F., Stereńczak K.: Multitemporal hyperspectral tree species classification in the Białowieża Forest World Heritage site, Forestry. An International Journal of Forest Research, vol. 94, no. 3, 2021, pp. 464-476. https://doi.org/10.1093/forestry/cpaa048.
  34. Nezami S., Khoramshahi E., Nevalainen O., Pölönen I., Honkavaara E.: Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks. Remote Sensing, vol. 12, 2020, 1070. https://doi.org/10.3390/rs12071070.
  35. Phiri D., Simwanda M., Salekin S., Nyirenda V.R., Murayama Y., Ranagalage M.: Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sensing, vol. 12, no. 14, 2020, 2291. https://doi.org/10.3390/rs12142291.
  36. Raczko E., Zagajewski B.: Tree Species Classification of the UNESCO Man and the Biosphere Karkonoski National Park (Poland) Using Artificial Neural Networks and APEX Hyperspectral Images. Remote Sensing, vol. 10, 2018, 1111. https://doi.org/10.3390/rs10071111.
  37. Sabat-Tomala A., Raczko E., Zagajewski B.: Comparison of Support Vector Machine and Random Forest Algorithms for Invasive and Expansive Species Classification Using Airborne Hyperspectral Data. Remote Sensing, vol. 12, 2020, 516. https://doi.org/10.3390/rs12030516.
  38. Shoot C., Andersen H., Moskal L., Babcock C., Cook B., Morton D.: Classifying Forest Type in the National Forest Inventory Context with Airborne Hyperspectral and Lidar Data. Remote Sensing, vol. 13, 2021, 1863. https://doi.org/10.3390/rs13101863.
  39. Skoupý O., Zejdová L., Hanuš J.: The use of hyperspectral remote sensing for mapping the age composition of forest stands. Journal of Forest Science, vol. 58, 2012, pp. 287-297. https://doi.org/10.17221/86/2011-JFS.
  40. Stagakis S., Vanikiotis T., Sykiotia O.: Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 119, 2016, pp. 79-89. https://doi.org/10.1016/j.isprsjprs.2016.05.013.
  41. Stoffels J., Mader S., Hill J., Werner W., Ontrup G.: Satellite-based stand-wise forest cover type mapping using a spatially adaptive classification approach. European Journal of Forest Research, vol. 131, 2012, pp. 1071-1089. https://doi.org/10.1007/s10342-011-0577-2.
  42. Trier Ø., Salberg A., Kermit M., Rudjord Ø., Gobakken T., Næsset E., Aarsten D.: Tree species classification in Norway from airborne hyperspectral and airborne laser scanning data. European Journal of Remote Sensing, vol. 51, 2018, pp. 336-351. https://doi.org/10.1080/22797254.2018.1434424.
  43. Verrelst J., Schaepman M.E., Koetz B., Kneubühler M.: Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sensing of Environment, vol. 112, no. 5, 2008, pp. 2341-2353. https://doi.org/10.1016/j.rse.2007.11.001.
  44. Wan L., Lin Y., Zhang H., Wang F., Liu M., Lin H.: GF-5 Hyperspectral Data for Species Mapping of Mangrove in Mai Po, Hong Kong. Remote Sensing, vol. 12, 2020, 656. https://doi.org/10.3390/rs12040656.
Cited by
Show
ISSN
2300-7095
Language
eng
URI / DOI
http://dx.doi.org/10.7494/geom.2022.16.4.103
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu