BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Rastogi Sachin (M.J.P. Rohilkhand University, Bareilly, India), Iqbal Akhlad (Aligarh Muslim University, Aligarh, India), Rajan Sanjeev (M.J.P. Rohilkhand University, Bareilly, India)
Title
Optimality Conditions for Preinvex Functions Using Symmetric Derivative
Source
Operations Research and Decisions, 2022, vol. 32, no. 4, s. 91-101, bibliogr. 23 poz.
Keyword
Optymalizacja, Funkcje, Pochodna
Optimalization, Functions, Derivative
Note
summ.
Abstract
As a generalization of convex functions and derivatives, in this paper, the authors study the concept of a symmetric derivative for preinvex functions. Using symmetrical differentiation, they discuss an important characterization for preinvex functions and define symmetrically pseudo-invex and symmetrically quasi-invex functions. They also generalize the first derivative theorem for symmetrically differentiable functions and establish some relationships between symmetrically pseudo-invex and symmetrically quasi-invex functions. They also discuss the Fritz John type optimality conditions for preinvex, symmetrically pseudo-invex and symmetrically quasi-invex functions using symmetrical differentiability. (original abstract)
Accessibility
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
Full text
Show
Bibliography
Show
  1. AULL, C. E. The first symmetric derivative. The American Mathematical Monthly 74, 6 (1967), 708-711.
  2. BARANI, A., GHAZANFARI A. G., AND DRAGOMIR S. S. Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. Journal of Inequalities and Applications 2012 (2012), 247.
  3. GUO, Y., YE, G., LIU, W., ZHAO, D., AND TREANŢĂ, S. On symmetric gH-derivative: Applications to dual interval-valued optimization problems. Chaos, Solitons and Fractals 158 (2022), 112068.
  4. GUO, Y., YE, G., ZHAO, D., AND LIU, W. gH-symmetrically derivative of interval-valued functions and application in intervalvalued optimization. Symmetry 11 (2019), 1203.
  5. GUO, Y., YE, G., LIU, W., ZHAO, D., AND TREANŢĂ, S. Optimality conditions and duality for a class of generalized convex interval-valued optimization problems. Mathematics 9 (2021), 2979.
  6. HANSON, M. A. On sufficiency of the Kuhn-Tucker conditions. Journal of Mathematical Analysis and Applications 80, 2 (1981), 545-550.
  7. HO, Q. Necessary and sufficient KKT optimality conditions in non-convex optimization. Optimization Letters 11 (2017), 41-46.
  8. IVANOV, V. I. Second-order optimality conditions for inequality constrained problems with locally Lipschitz data. Optimization Letters 4 (2010), 597-608.
  9. LARSON, L. The symmetric derivative. Transactions of the American Mathematical Society 277 (1983), 589-599.
  10. MINCH, R. A. Applications of symmetric derivatives in mathematical programming. Mathematical Programming 1, 1 (1971), 307-320.
  11. MISHRA, S. K. Generalized fractional programming problems containing locally subdifferentiable and ρ-Univex functions. Optimization 41, 2 (1997), 135-158.
  12. MISHRA, S. K., AND GIORGI, G. Invexity and optimization. Springer Science and Business Media, Berlin, 2008.
  13. MISHRA, S. K., WANG, S. Y., AND LAI, K. K. Multiple objective fractional programming involving semi locally type I-preinvex and related functions. Journal of Mathematical Analysis and Applications 310, 2 (2005), 626-640.
  14. MISHRA, S. K., WANG, S. Y., AND LAI, K. K. Optimality and duality for a multi-objective programming problem involving generalized d-type-I and related n-set functions. European Journal of Operational Research 173, 2 (2006), 405-418.
  15. MISHRA, S. K., WANG, S. Y., AND LAI, K. K. On non-smooth α-invex functions and vector variational-like inequality. Optimization Letters 2, 1 (2008), 91-98.
  16. MISHRA, S. K., WANG, S. Y., AND LAI, K. K., AND SHI, J. M. Nondifferentiable minimax fractional programming under generalized univexity. Journal of Computational and Applied Mathematics 158, 2 (2003), 379-395.
  17. MOHAN, S. R., AND NEOGY, S. K. On invex sets and preinvex functions. Journal of Mathematical Analysis and Applications 189, 3 (1995), 901-908.
  18. SHARMA, N., MISHRA, S. K., AND HAMDI, A. A weighted version of Hermite-Hadamard type inequalities for strongly GA-convex functions. International Journal of Advanced and Applied Sciences 7, 3 (2020), 113-118.
  19. SHARMA, N., MISHRA, S. K., AND HAMDI, A. Hermite-Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals. Journal of Inequalities and Applications 1 (2021), 98.
  20. THOMSON, B. S. Symmetric properties of real functions. Dekker, New York, NY, USA, 1994.
  21. WEIR, T., AND JEYAKUMAR, V. A class of nonconvex functions and mathematical programming. Bulletin of the Australian Mathematical Society 38, 2 (1988), 177-189.
  22. WEIR, T., AND MOND, B. Pre-invex functions in multiobjective optimization. Journal of Mathematical Analysis and Applications 136, 1 (1988), 29-38.
  23. YANG, X. Q., AND CHEN, G.-Y. A class of nonconvex functions and pre-variational inequalities. Journal of Mathematical Analysis and Applications 169, 2 (1992), 359-373.
Cited by
Show
ISSN
2081-8858
Language
eng
URI / DOI
http://dx.doi.org/10.37190/ord220406
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu