- Author
- Stachura Michał (Jan Kochanowski University in Kielce), Wodecka Barbara (Uniwersytet Jana Kochanowskiego w Kielcach)
- Title
- k-th Record Estimator of the Scale Parameter of the α-stable Distribution
- Source
- Statistics in Transition, 2022, vol. 23, nr 4, s. 203-215, tab., wykr., bibliogr. 25 poz.
- Keyword
- Estymatory, Estymacja, Metoda Monte Carlo
Estimators, Estimation, Monte Carlo method - Note
- summ.
- Abstract
- Various techniques of scale parameter estimation have been proposed in the case of alpha stable distributions. In the paper, the authors present an estimation technique that involves the k-th record theory. Although this theory is over 40 years old, its implementation in the classical extreme value theory - being the other cornerstone of the presented approach - is quite new, and tempting. Several theoretical properties of the introduced scale parameter estimators are presented. With the use of Monte Carlo methods, a comparative analysis is performed between the approach based on k-th records and approaches based on Hill's and Pickands' estimators. Additionally, the paper uses a real-life data set to illustrate how to effectively apply the k-th record estimator of the scale parameter. The research indicates several advantages of the k-th record approach over its other counterparts, especially when dealing with incomplete information about the underlying sample. (original abstract)
- Accessibility
- The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
The Library of University of Economics in Katowice - Full text
- Show
- Bibliography
- Aiube, F. L., Baidya T. K. N., Blank, F. F., Mattos, A. B., Saboia W. and Siddiqui, A. S., (2013). Modeling Hourly European Electricity Spot Prices via a SARMA-GARCH Approach. Working Paper of Stockholm University, (260041), pp. 1-46.
- Ahsanullah, M., (1990). Estimation of the parameters of the Gumbel distribution based on the m record values. Comput. Statist. Quart, 6, pp. 231-239.
- Berred, M., (1995). K-record values and the extreme-value index. J. Stat. Plan. Inference, 45, pp. 49-63.
- Caeiro, F., Mateus, A., (2014). Randtests: Testing randomness in R. R package version 1.0, https://CRAN.R-project.org/package=randtests
- Chrapek, M., (2012). Records: Record Values and Record Times. R package version 1.0, https://CRAN.R-project.org/package=Records.
- Dziubdziela, W., Kopocinski, B., (1976), Limiting properties of the k-th record values. Zastosowania Matematyki, 15, pp. 187-190.
- Faraway, J., Marsaglia, G., Marsaglia, J. and Baddeley, A., (2019). Goftest: Classical Goodness-of-Fit Tests for Univariate Distributions. R package version 1.2-2, https://CRAN.R-project.org/package=goftest
- Gomes, M. I., E Castro, L. C., Fraga, Alves, M. I. and Pestana, D., (2008). Statistics of extremes for IID data and breakthroughs in the estimation of the extreme value index: Laurens de Haan leading contributions. Extremes, 11, pp. 3-34.
- De Haan, L., Ferreira, A., (2006). Extreme Value Theory. An Introduction. Springer, New York.
- Khindanova, I., Rachev, S. and Schwartz, E., (2001). Stable Modeling of Value at Risk. Mathematical and Computer Modelling, 34, pp. 1223-1259.
- Meraghni, D., Necir, A., (2007). Estimating the Scale Parameter of a Lévy-stable Distribution via the Extreme Value Approach. Methodol Comput Appl Probab, 9(4), pp. 557-572.
- Malinowska, I., Pawlas, P. and Szynal, D., (2005). Estimation of the parameters of Gumbel and Burr distributions in terms of kth record values. Applicationes Mathematicae, 32, pp. 375-393.
- Malinowska, I., Szynal, D., (2004). On a family of Bayesian estimators and predictors for a Gumbel model based on the kth lower records. Applicationes Mathematicae, 31, pp. 107-115.
- Nolan, J. P., (2011). Stable Distributions - Models for Heavy Tailed Data. Birkhäuser, Boston.
- Pitman, E., (1937). The "closest" estimates of statistical parameters. Mathematical Proceedings of the Cambridge Philosophical Society, 33(2), pp. 212-222.
- R Core Team, (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL https://www.Rproject. org/.
- Samorodnitsky, G., Taqqu, M. S., (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman & Hall, New York.
- Stachura, M., (2017). On improved estimation of the extreme value index with the use of a shifted Hill's estimator. Research Papers of the Wroclaw University of Economics, 482, pp. 252-260.
- Stachura, M., Wodecka, B., (2016). Wybrane aspekty i zastosowania modeli zdarzeń ekstremalnych, Research Papers of the Wroclaw University of Economics, 427, pp. 205-214.
- Stoyanov, S., Samorodnitsky, G. and Rachev, S. T., (2006). Computing the portfolio Conditional Value-at-Risk in the ?-stable case. Probability and Mathematical Statistics, 26(1), pp. 1-22.
- Weron, R., (2001). Levy-stable distributions revisited: tail index > 2 does not exclude the Levy-stable regime. International Journal of Modern Physics C, 12 (2), pp. 209- 223.
- Weron, R., (2004). Computationally intensive Value at Risk calculations, Papers, Humboldt-Universität Berlin, Center for Applied Statistics and Economics (CASE), No. 2004, 32.
- Wodecka, B., (2016). Wybrane aspekty i zastosowania modeli zdarzeń ekstremalnych. Estymacja modeli na podstawie teorii wartości rekordowych, PhD Thesis, available at: http://hdl.handle.net/11089/20449.
- Wuertz, D., Maechler, M. and Rmetrics Core Team Members, (2016). Stabledist: Stable Distribution Functions. R package version 0.7-1, https://CRAN.Rproject. org/package=stabledist.
- Wuertz, D., Setz, T., Chalabi, Y., Boudt, C., Chausse, P. and Miklovac, M., (2020). fGarch: Rmetrics - Autoregressive Conditional Heteroskedastic Modelling. R package version 3042.83.2, https://CRAN.R-project.org/package=fGarch
- Cited by
- ISSN
- 1234-7655
- Language
- eng
- URI / DOI
- http://dx.doi.org/10.2478/stattrans-2022-0050