BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Maciejczak Mariusz (Warsaw University of Life Sciences - SGGW, Poland)
Title
Nature Based Innovations in the Development of Bioeconomy
Innowacje oparte na przyrodzie w rozwoju biogospodarki
Source
Annals of the Polish Association of Agricultural and Agribusiness Economists, 2023, T. 25, z. 2, s. 97-108, tab., bibliogr. poz.
Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu
Keyword
Biogospodarka, Innowacje
Bioeconomy, Innovations
Note
JEL Classification: Q12, D24
streszcz., summ.
Abstract
Głównym celem artykułu jest przedstawienie korzyści i wyzwań związanych z biogospodarką jako podsektorem gospodarki, a także wpływu rewolucji biologicznej na biogospodarkę. Dokonano również oceny gotowości rynkowej różnych innowacji bazujących na przyrodzie w rolnictwie. Stwierdzono, że biogospodarka stanowi drogę do zrównoważonego rozwoju, odpowiadając na wyzwania społeczne i środowiskowe i jednocześnie wspierając wzrost gospodarczy, a tym samym warunkuje bardziej odporny i zasobooszczędny rozwój. Innowacje oparte na przyrodzie wykorzystują siłę odporności, wydajności i zdolności adaptacyjnych natury, aby sprostać wyzwaniom społecznym w zrównoważony sposób. Innowacje te oferują obiecujące rozwiązania gospodarcze, przy jednoczesnym zwiększeniu ochrony różnorodności biologicznej i zdrowia ekosystemów. Na podstawie opinii kluczowych interesariuszy opracowano model Garther Hype Cycle. Fazę produktywności osiągają te technologie i produkty, którym udało się wyrwać z niszy i zyskać powszechną akceptację. W analizie ten poziom osiągnęły kontrola biologiczna i zastosowanie pożytecznych mikroorganizmów. Stwierdzono, że zwłaszcza kontrola biologiczna jest technologią bazującą na przyrodzie, która dominuje w obecnym rolnictwie i której znaczenie będzie wzrastało w przyszłości.(abstrakt oryginalny)

The main purpose of the article was to present the benefits and challenges related to the bioeconomy as a subsector of the economy, as well as the impact of the biological revolution on the bioeconomy. The market readiness of various nature-based innovations in agriculture was also assessed. The bioeconomy was found to be a right path to sustainable development, addressing social and environmental challenges while supporting economic growth. Thus, it determines a more resilient and resource-efficient development. Nature-based innovations harness the power of nature's resilience, efficiency and adaptability to meet societal challenges in a sustainable way. These innovations offer promising economic solutions while increasing the protection of biodiversity and the health of ecosystems. Based on feedback from key stakeholders, the Garther Hype Cycle model was developed. The productivity phase is reached by those technologies and products that have managed to break out of their niche and gain widespread acceptance. In the analysis, this level was achieved by biological control and the use of beneficial microorganisms. Biological control in particular has been identified as a nature-based technology that dominates today's agriculture and will increase in importance in the future.(original abstract)
Accessibility
The Main Library of the Cracow University of Economics
The Library of Warsaw School of Economics
Full text
Show
Bibliography
Show
  1. Barratt Barbara I.P., V.C. Moran, F. Bigler, Joop van Lenteren. 2018. The status of biological control and recommendations for improving uptake for the future. BioControl 63: 155-167. DOI: 10.1007/s10526-017-9831-y.
  2. Bracco Stefania, Ozgul Calicioglu, Marta Gomez San Juan, Alessandro Flammini. 2018. Assessing the contribution of bioeconomy to the total economy: a review of National Frameworks. Sustainability 10 (6): 1698. DOI: /10.3390/su10061698.
  3. Bugge Markus M., Teis Hansen, Antje Klitkou. 2016. What is the bioeconomy? A review of the literature. Sustainability 8 (7): 691. DOI; 10.3390/su8070691.
  4. Casa Marcello, Michele Miccio, Giovanni De Feo, Andrea Paulillo, Roberto Chirone, Dalia Paulillo, Paola Lettieri, Riccardo Chirone. 2021. A brief overview on valorization of industrial tomato by-products using the biorefinery cascade approach. Detritus 15: 31-39. DOI: 10.31025/2611-4135/2021.14088.
  5. Christensen Thomas, George Philippidis, Myrna Leeuwen, Asha Singh, Calliope Panoutsou. 2022. Bridging modelling and policymaking efforts to realize the European bioeconomy. GCB Bioenergy 14 (11): 1183-1204. DOI: 10.1111/gcbb.12996.
  6. Conteratto Caroline, Felipe Dalzotto Artuzo, Omar Inácio Benedetti Santos, Edson Talamini. 2021. Biorefinery: A comprehensive concept for the sociotechnical transition toward bioeconomy. Renewable and Sustainable Energy Reviews 151: 111527. DOI: 10.1016/j.rser.2021.111527.
  7. Daneshmandi Mina, Hadi Sahebi, Jalal Ashayeri. 2022. The incorporated environmental policies and regulations into bioenergy supply chain management: A literature review. Science of The Total Environment 820: 153202. DOI: 10.1016/j.scitotenv.2022.153202.
  8. Duque-Acevedo Mónica, Luis Jesús Belmonte-Ureña, Francisco J. Cortés-García, Francisco Camacho-Ferre. 2022. Recovery of agricultural waste biomass: a sustainability strategy for moving towards a circular bioeconomy. [In] Handbook of Solid Waste Management, C. Baskar, S. Ramakrishna, S. Baskar, R. Sharma, A. Chinnappan, R. Sehrawat, 467-496. Singapore: Springer. DOI: 10.1007/978-981-16-4230-2_25.
  9. Faivre Nicolas, Marco Fritz, Tiago Freitas, Birgit de Boissezon, Sofie Vandewoestijne. 2017. Nature-Based Solutions in the EU: innovating with nature to address social, economic and environmental challenges. Environmental Research 159: 509-518. DOI: 10.1016/j.envres.2017.08.032.
  10. Fischer Rainer, Johannes F. Buyel. 2020. Molecular farming - the slope of enlightenment. Biotechnology Advances 40: 107519. DOI: 10.1016/j.biotechadv.2020.107519.
  11. Freeman Patricia K., Robert S. Freeland. 2015. Agricultural UAVs in the U.S.: potential, policy, and hype. Remote Sensing Applications: Society and Environment 2: 35-43. DOI: 10.1016/j.rsase.2015.10.002.
  12. Grossauer Franz, Gernot Stoeglehner. 2023. Bioeconomy - a systematic literature review on spatial aspects and a call for a New Research Agenda. Land 12 (1): 234. DOI: 10.3390/land12010234.
  13. Klein Oliver, Stefan Nier, Christine Tamásy. 2022. Circular agri-food economies: business models and practices in the potato industry. Sustainability Science 17 (6): 2237-2252. DOI: 10.1007/s11625-022-01106-1. Google Scholar
  14. Krauze Kinga, Iwona Wagner. 2019. From classical water-ecosystem theories to nature-based solutions - contextualizing nature-based solutions for sustainable city. Science of The Total Environment 655: 697-706. DOI: 10.1016/j.scitotenv.2018.11.187.
  15. Lamb David W., Paul Frazier, Peter Adams. 2008. Improving pathways to adoption: putting the right P's in precision agriculture. Computers and Electronics in Agriculture 61 (1): 4-9. DOI: 10.1016/j.compag.2007.04.009.
  16. Leach Jan E., Lindsay R. Triplett, Cristiana T. Argueso, Pankaj Trivedi. 2017. Communication in the phytobiome. Cell 169 (4): 587-596. DOI: 10.1016/j.cell.2017.04.025.
  17. Lindner Marcus, Tommi Suominen. 2017. Towards a sustainable bioeconomy. Scandinavian Journal of Forest Research 32 (7): 549-550. DOI: 10.1080/02827581.2017.1357329.
  18. Lokhorst C., Rudi de Mol, C. Kamphuis. 2019. Big Data in precision dairy farming. Animal 13 (7): 1519-1528. DOI: 10.1017/S1751731118003439.
  19. Maciejczak Mariusz. 2022. The role of biological knowledge in the development of sustainable bioeconomy - case of potato and its beneficial microorganisms interactions. Annals of the Polish Association of Agricultural and Agribusiness Economists 24 (2): 74-84. DOI: 10.5604/01.3001.0015.8615.
  20. Masiero Mauro, Laura Secco, Davide Pettenella, et al. 2020. Bioeconomy perception by future stakeholders: Hearing from European forestry students. Ambio 49 (12): 1925-1942. DOI: 10.1007/s13280-020-01376-y.
  21. Navare Kranti, Bart Muys, Karl C. Vrancken, Karel Van Acker. 2021. Circular economy monitoring - how to make it apt for biological cycles? Resources, Conservation and Recycling 170: 105563. DOI: 10.1016/j.resconrec.2021.105563.
  22. Ozgur Dedehayir, Martin Steinert. 2016. The hype cycle model: a review and future directions, Technological Forecasting and Social Change 108: 28-41. DOI: 10.1016/j.techfore.2016.04.005.
  23. Philp Jim. 2023. Bioeconomy and net-zero carbon. Trends in Biotechnology 1 (1): 307-322. DOI: 10.1016/j.tibtech.2022.09.016. Google Scholar
  24. Rai Mahendra, Suraj Rathod, Gauravi Agarkar, Mudasir Ahmad Dar, et al. 2014. Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis 62: 63-79. DOI: 10.1007/s13199-014-0273-3.
  25. Richter Sören, Nora Szarka, Alberto Bezama, Daniela Thrän. 2022. What drives a future German bioeconomy? A narrative and STEEPLE analysis for explorative characterisation of scenario drivers. Sustainability 14 (5): 3045. DOI: 10.3390/su14053045.
  26. Ronzon Tevecia, Maria Lusser, Leticia Landa, Robert M'barek, Jacopo Giuntoli, et al. 2017. Bioeconomy Report 2016. EUR 28468 EN, JRC103138. Luxembourg (Luxembourg): Publications Office of the European Union, Joint Research Centre.
  27. Ronzon Tévécia, Stephan Piotrowski. 2017. Are primary agricultural residues promising feedstock for the European bioeconomy? Industrial Biotechnology 13 (3): 113-127. DOI: 10.1089/ind.2017.29078.tro.
  28. Seiber James N., Joel Coats, Stephen O. Duke, Aaron D. Gross. 2014. Biopesticides: state of the art and future opportunities. Journal of Agricultural and Food Chemistry 62 (48): 11613-11619. DOI: 10.1021/jf504252n.
  29. Sowińska-Świerkosz Barbara, Joan García. 2022. What are Nature-Based Solutions (NBS)? Setting core ideas for concept clarification. Nature-Based Solutions 2: 100009. DOI: 10.1016/j.nbsj.2022.100009.
  30. Turnsek Maja, Agnes Joly, Ragnheidur Thorarinsdottir, Ranka Junge. 2020. Challenges of Commercial Aquaponics in Europe: Beyond the Hype. Water 12 (1): 306. DOI: 10.3390/w12010306.
  31. Valdivia-Granda Willy A. 2019. Big data and artificial intelligence for biodefense: A genomic-based approach for averting technological surprise. Defense Against Biological Attacks 1: 317-327. DOI: 10.1007/978-3-030-03053-7_16.
  32. Viaggi Davide, Matteo Zavalloni. 2021. Bioeconomy and circular economy: implications for economic evaluation in the post-COVID era. Circular Economy and Sustainability 1 (4): 1257-1269. DOI: 10.1007/s43615-021-00113-1. Google Scholar
  33. Vural Gursel Iris, Berien Elbersen, Koen P.H. Meesters, Myrna van Leeuwen. 2022. Defining circular economy principles for biobased products. Sustainability 14 (9): 12780. DOI: 10.3390/su141912780.
  34. Weinraub Lajoie Evviva, Laurie Bridges. 2014. Innovation decisions: using the gartner hype cycle. Library Leadership & Management 28 (4): 1-7. DOI: 10.5860/llm.v28i4.7083.
  35. Wesseler Justus, Joachim von Braun. 2017. Measuring the bioeconomy: economics and policies. Annual Review of Resource Economics 9 (1): 275-298. DOI: 10.1146/annurev-resource-100516-053701.
  36. Zilberman David, Ben Gordon, Gal Hochman, Justus Wesseler. 2018. Economics of sustainable development and the bioeconomy. Applied Economic Perspectives and Policy 40 (1): 22-37. DOI: 10.1093/aepp/ppx051.
Cited by
Show
ISSN
1508-3535
Language
eng
URI / DOI
http://dx.doi.org/10.5604/01.3001.0053.6818
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu