BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Majka Andrzej (Rzeszów University of Technology, Poland), Klimczyk Michał (Rzeszów University of Technology, Poland), Kucharski Kamil (Rzeszów University of Technology, Poland), Muszyńska-Pałys Jagoda (Rzeszów University of Technology, Poland)
Hydrogen Valley as a Hub for Technological Cooperation Between Science, Business, Local Government and Ngos. An Overview of Approaches in Europe
Torun International Studies, 2023, nr 1(17), s. 5-15, tab., bibliogr. 31 poz.
Issue title
A Modern Model of Cooperation between Universities and Social and Business Environment. An International Context
Wodór, Dekarbonizacja, Suwerenność, Energetyka, Klimat, Gospodarka
Hydrogen, Decarbonization, Sovereignty, Energetics, Climate, Economy
Considering the deepening geopolitical and climate crisis, more attention is systematically being paid to the development of alternative energy technologies. It is important to note that economically important energy sovereignty can be achieved through methods that simultaneously meet climate neutrality objectives. Therefore, the current period is a historic opportunity to enable the development of green, renewable energy, as this has comprehensive justification. In the ongoing circumstances, one of the fastest growing branches of science and economy is hydrogen technology. Numerous hydrogen projects of varying territorial scope are being developed in Europe. They are characterised by different organisational approaches. Therefore, the authors have undertaken to review and evaluate different hydrogen valley concepts using the SWOT method. The conducted work reviews leading Euopean hydrogen projects and identifies the strengths, weaknesses, opportunities and threats of different types of hydrogen valley organisational concepts. The results of the work carried out will support the construction and development of new hydrogen valleys, which, in line with the objectives of the European Union, will be systematically created in the coming years.(original abstract)
Full text
  1. Ale, B. B., & Bade Shrestha, S. O. (2009). Introduction of hydrogen vehicles in Kathmandu Valley: A clean and sustainable way of transportation. Renewable Energy, 34(6), 1432-1437.
  2. Balcombe, P., Brierley, J., Lewis, C., Skatvedt, L., Speirs, J., Hawkes, A., & Staffell, I. (2019). How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Conversion and Management, 182, 72-88.
  3. Barreto, L., Makihira, A., & Riahi, K. (2003). The hydrogen economy in the 21st century: A sustainable development scenario. International Journal of Hydrogen Energy, 28(3), 267-284.
  4. BIG HIT. (2023).
  5. Bonciu, F. (2020). The European Union Hydrogen Strategy as a significant step towards a circular economy. ROMANIAN JOURNAL OF EUROPEAN AFFAIRS, 20(2).
  6. Chi, J., & Yu, H. (2018). Water electrolysis based on renewable energy for hydrogen production. Cuihua Xuebao/Chinese Journal of Catalysis, 39(3), 390-394.
  7. Clark, W. W., & Rifkin, J. (2006). A green hydrogen economy. Energy Policy, 34(17), 2630-2639.
  8. Demirbas, A. (2017). Future hydrogen economy and policy. http://Dx.Doi.Org/10.1080/15567249.2014.950394, 12(2), 172-181.
  9. Dodds, P. E., Staffell, I., Hawkes, A. D., Li, F., Grünewald, P., McDowall, W., & Ekins, P. (2015). Hydrogen and fuel cell technologies for heating: A review. International Journal of Hydrogen Energy, 40(5), 2065-2083.
  10. European Commission. (2019). The European Green Deal.
  11. European Commission. (2021). A hydrogen strategy for a climate-neutral Europe.
  12. European Commission. (2022). REPowerEU Plan.
  13. Ficco, G., Arpino, F., Dell'Isola, M., Grimaldi, M., & Lisi, S. (2022). Development of a Hydrogen Valley for Exploitation of Green Hydrogen in Central Italy. Energies, 15(21).
  14. Green Hysland - Deployment of a H2 Ecosystem on the Island of Mallorca. (2023).
  15. Heavenn - H2 Energy Applications in Valley Environments for Northern Netherlands. (2023).
  16. Hoelzen, J., Silberhorn, D., Zill, T., Bensmann, B., & Hanke-Rauschenbach, R. (2022). Hydrogen-powered aviation and its reliance on green hydrogen infrastructure - Review and research gaps. International Journal of Hydrogen Energy, 47(5), 3108-3130.
  17. Hosseini, S. E., & Wahid, M. A. (2020). Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy. International Journal of Energy Research, 44(6), 4110-4131.
  18. Hydrogen Europe, Hydrogen Europe Research, S3 H2 Valleys Platform, & European Commission. (2023). Joint Declaration on Hydrogen Valleys.
  19. Hydrogen Valley Estonia. (2023).
  20. Koumi Ngoh, S., & Njomo, D. (2012). An overview of hydrogen gas production from solar energy. Renewable and Sustainable Energy Reviews, 16(9), 6782-6792.
  21. Kovač, A., Paranos, M., & Marciuš, D. (2021). Hydrogen in energy transition: A review. International Journal of Hydrogen Energy, 46(16), 10016-10035.
  22. Maack, M. H., & Skulason, J. B. (2006). Implementing the hydrogen economy. Journal of Cleaner Production, 14(1), 52-64.
  23. Osman, A. I., Mehta, N., Elgarahy, A. M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A. H., & Rooney, D. W. (2022). Hydrogen production, storage, utilisation and environmental impacts: a review. Environmental Chemistry Letters, 20(1), 153-188.
  24. Pandev, M., Lucchese, P., Mansilla, C., Le Duigou, A., Abrashev, B., & Vladikova, D. (2017). Hydrogen Economy: the future for a sustainable and green society. Bulgarian Chemical Communications, 49, 84-92.
  25. Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15(3), 1513-1524.
  26. Parra, D., Valverde, L., Pino, F. J., & Patel, M. K. (2019). A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renewable and Sustainable Energy Reviews, 101, 279-294.
  27. Petrollese, M., Concas, G., Lonis, F., & Cocco, D. (2022). Techno-economic assessment of green hydrogen valley providing multiple end-users. International Journal of Hydrogen Energy, 47(57), 24121-24135.
  28. Podkarpacka Dolina Wodorowa. (2023).
  29. Rissman, J., Bataille, C., Masanet, E., Aden, N., Morrow, W. R., Zhou, N., Elliott, N., Dell, R., Heeren, N., Huckestein, B., Cresko, J., Miller, S. A., Roy, J., Fennell, P., Cremmins, B., Koch Blank, T., Hone, D., Williams, E. D., de la Rue du Can, S., Helseth, J. (2020). Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Applied Energy, 266.
  30. Staffell, I., Scamman, D., Abad, A. V., Balcombe, P., Dodds, P. E., Ekins, P., Shah, N., & Ward, K. R. (2019). The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci, 12, 463.
  31. T-Raissi, A., & Block, D. L. (2004). Hydrogen: Automotive fuel of the future. IEEE Power and Energy Magazine, 2(6), 40-45.
Cited by
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu