BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Korzynski Pawel (Kozminski University, Poland), Mazurek Grzegorz (Kozminski University, Poland), Krzypkowska Pamela (Microsoft Poland), Kurasinski Artur
Title
Artificial Intelligence Prompt Engineering as a New Digital Competence : Analysis of Generative AI Technologies such as ChatGPT
Source
Entrepreneurial Business and Economics Review, 2023, vol. 11, nr 3, s. 25-37, tab., bibliogr. 45 poz.
Keyword
Sztuczna inteligencja, Kompetencje, Technologie cyfrowe
Artificial intelligence, Competences, Digital technologies
Note
JEL Classification: O33; L26; M15; L86.
summ.
Abstract
Objective: The article aims to offer a thorough examination and comprehension of the challenges and prospects connected with artificial intelligence (AI) prompt engineering. Our research aimed to create a theoretical framework that would highlight optimal approaches in the field of AI prompt engineering.
Research Design & Methods: This research utilized a narrative and critical literature review and established a conceptual framework derived from existing literature taking into account both academic and practitioner sources. This article should be regarded as a conceptual work that emphasizes the best practices in the domain of AI prompt engineering.
Findings: Based on the conducted deep and extensive query of academic and practitioner literature on the subject, as well as professional press and Internet portals, we identified various insights for effective AI prompt engineering. We provide specific prompting strategies.
Implications & Recommendations: The study revealed the profound implications of AI prompt engineering across various domains such as entrepreneurship, art, science, and healthcare. We demonstrated how the effective crafting of prompts can significantly enhance the performance of large language models (LLMs), generating more accurate and contextually relevant results. Our findings offer valuable insights for AI practitioners, researchers, educators, and organizations integrating AI into their operations, emphasizing the need to invest time and resources in prompt engineering. Moreover, we contributed the AI PROMPT framework to the field, providing clear and actionable guidelines for text-to-text prompt engineering.
Contribution & Value Added: The value of this study lies in its comprehensive exploration of AI prompt engineering as a digital competence. By building upon existing research and prior literature, this study aimed to provide a deeper understanding of the intricacies involved in AI prompt engineering and its role as a digital competence. (original abstract)
Full text
Show
Bibliography
Show
  1. Bang, Y., Cahyawijaya, S., Lee, N., Dai, W., Su, D., Wilie, B., Lovenia, H., Ji, Z., Yu, T.,. Chung, W., Do, Q.V., Xu, Y, fung, P. (2023). A multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity. arXiv preprint arXiv:2302.04023. https://doi.org/10.48550/arXiv.2302.04023
  2. Blundell, C.N., Mukherjee, M., & Nykvist, S. (2022). A scoping review of the application of the SAMR model in research. Computers and Education Open, 3, 100093. doi:https://doi.org/10.1016/j.caeo.2022.100093
  3. Cuofano, G. (2023). Prompt Engineering And Why It Matters To The AI Revolution. Retrieved from https://fourweekmba.com/prompt-engineering/ on May 10, 2023.
  4. DeWitt, D., & Alias, N. (2023). Creative Digital Pedagogies for Student Engagement: Preparing Students for Industry 4.0. In Digitalization and Development (pp. 112-132). Routledge.
  5. Ekin, S. (2023). Prompt Engineering For ChatGPT: A Quick Guide To Techniques, Tips, And Best Practices. TechRxiv. https://doi.org/10.36227/techrxiv.22683919.v2.
  6. Falloon, G. (2020). From digital literacy to digital competence: the teacher digital competency (TDC) framework. Educational Technology Research and Development, 68, 2449-2472. https://doi.org/10.1007/s11423-020-09767-4
  7. Fernández-Batanero, J.M., Montenegro-Rueda, M., Fernández-Cerero, J., & García-Martínez, I. (2022). Digital competences for teacher professional development. Systematic review. European Journal of Teacher Education, 45(4), 513-531. https://doi.org/10.1080/02619768.2020.1827389
  8. Ghazvininejad, M., Karpukhin, V., Gor, V., & Celikyilmaz, A. (2022). Discourse-Aware Soft Prompting for Text Generation. Paper presented at the Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.
  9. Głodowska, A., Maciejewski, M., & Wach, K. (2023). Navigating the digital landscape: A conceptual framework for understanding digital entrepreneurship and business transformation. International Entrepreneurship Review, 9(4), Ahead-of-Print.
  10. God, K. (2023). Why Prompt Engineering Is the Job of the Future. Retrieved from https://medium.com/the- generator/why-prompt-engineering-is-the-job-of-the-future-2a7249b0c82d on May 10, 2023.
  11. Guitert, M., Romeu, T., & Baztán, P. (2021). The digital competence framework for primary and secondary schools in Europe. European Journal of Education, 56(1), 133-149. https://doi.org/10.1111/ejed.12430
  12. Kelentrić, M., Helland, K., & Arstorp, A.T. (2017). Professional digital competence framework for teachers. The Norwegian Centre for ICT in Education, 134(1), 1-74.
  13. Korzynski, P., Haenlein, M., & Rautiainen, M. (2021). Video Techniques That Help-or Hurt-Crowdfunding Campaigns. Harvard Business Review, 99(2), 29-29. Retrieved from www.hbr.org on May 10, 2023.
  14. Korzynski, P., Kozminski, A.K., & Baczynska, A.K. (2023). Navigating leadership challenges with technology: Uncovering the potential of ChatGPT, virtual reality, human capital management systems, robotic process automation, and social media. International Entrepreneurship Review, 9(2). https://doi.org/10.15678/IER.2023.0902.01
  15. Korzynski, P., Mazurek, G., Altmann, A., Ejdys, J., Kazlauskaite, R., Paliszkiewicz, J., Wach, K., & Ziemba, E. (2023). Generative artificial intelligence as a new context for management theories: analysis of ChatGPT. Central European Management Journal, 31(1), 3-13. https://doi.org/10.1108/CEMJ-02-2023-0091
  16. Lester, B., Al-Rfou, R., & Constant, N. (2021). The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691. https://doi.org/10.48550/arXiv.2104.08691
  17. Li, Z. (2023). The Dark Side of ChatGPT: Legal and Ethical Challenges from Stochastic Parrots and Hallucination. arXiv preprint arXiv:2304.14347. https://doi.org/10.48550/arXiv.2304.14347
  18. Ling, C., Zhang, X., Zhao, X., Wu, Y., Liu, Y., Cheng, W., Chen, H.,Zhao, L. (2023). Knowledge-enhanced Prompt for Open- domain Commonsense Reasoning. working paper. Retrieved from https://charliezhaoyinpeng.github.io/UDM- AAAI23/assets/papers/14/CameraReady/Commonsense_Reasoning___AAAI_UDM.pdf on May 9, 2023.
  19. Liu, X., Ji, K., Fu, Y., Tam, W. L., Du, Z., Yang, Z., & Tang, J. (2021). P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks. arXiv preprint arXiv:2110.07602. https://doi.org/10.48550/arXiv.2110.07602
  20. Martzoukou, K., Fulton, C., Kostagiolas, P., & Lavranos, C. (2020). A study of higher education students' self- perceived digital competences for learning and everyday life online participation. Journal of Documentation, 76(6), 1413-1458. https://doi.org/10.1108/JD-03-2020-0041
  21. Meyerson, E., Nelson, M.J., Bradley, H., Moradi, A., Hoover, A.K., & Lehman, J. (2023). Language Model Crossover: Variation through Few-Shot Prompting. arXiv preprint arXiv:2302.12170. https://doi.org/10.48550/arXiv.2302.12170
  22. Microsoft. (2022). CarMax puts customers first with car research tools powered by Azure OpenAI Service. Retrieved from https://customers.microsoft.com/en-us/story/1501304071775762777-carmax-retailer- azure-openai-service on July 17, 2023.
  23. Microsoft. (2023a). KPMG augments current capabilities and improves service delivery model with Azure OpenAI Service Retrieved from https://customers.microsoft.com/EN-US/story/1607565448540657318-kpmg- professional-services-azure-openai-service on July 17, 2023.
  24. Microsoft. (2023b). Strabag SE builds a risk management solution to improve efficiency using Microsoft Intelligent Data Platform. Retrieved from https://customers.microsoft.com/en-gb/story/1596825960615628483-strabag- discrete-manufacturing-azure-en-austria on July 17, 2023.
  25. Oppenlaender, J. (2022). A Taxonomy of Prompt Modifiers for Text-to-Image Generation. arXiv preprint arXiv:2204.13988. https://doi.org/10.48550/arXiv.2204.13988
  26. Oppenlaender, J., Linder, R., & Silvennoinen, J. (2023). Prompting AI Art: An Investigation into the Creative Skill of Prompt Engineering. arXiv preprint arXiv:2303.13534. https://doi.org/10.48550/arXiv.2303.13534
  27. Oppenlaender, J., Visuri, A., Paananen, V., Linder, R., & Silvennoinen, J. (2023). Text-to-Image Generation: Perceptions and Realities. arXiv preprint arXiv:2303.13530. https://doi.org/10.48550/arXiv.2303.13530
  28. Parsons, G. (2023). How to use AI image prompts to generate art using DALL-E. Retrieved from https://create.microsoft.com/en-us/learn/articles/how-to-image-prompts-dall-e-ai on 10 May, 2023.
  29. Polak, M.P., & Morgan, D. (2023). Extracting Accurate Materials Data from Research Papers with Conversational Language Models and Prompt Engineering--Example of ChatGPT. arXiv preprint arXiv:2303.05352. https://doi.org/10.48550/arXiv.2303.05352
  30. Popli, N. (2023). The AI Job That Pays Up to $335K-and You Don't Need a Computer Engineering Background. Retrived from https://time.com/6272103/ai-prompt-engineer-job/ on April 15, 2023.
  31. Pozo-Sánchez, S., López-Belmonte, J., Rodríguez-García, A.M., & López-Núñez, J.A. (2020). Teachers' digital competence in using and analytically managing information in flipped learning (Competencia digital docente para el uso y gestión analítica informacional del aprendizaje invertido). Culture and Education, 32(2), 213- 241. https://doi.org/10.1080/11356405.2020.1741876
  32. Ratten, V. (2023). Research Methodologies for Business Management. Taylor & Francis.
  33. Reisoğlu, İ., & Çebi, A. (2020). How can the digital competences of preservice teachers be developed? Examining a case study through the lens of DigComp and DigCompEdu. Computers & Education, 156, 103940. https://doi.org/10.1016/j.compedu.2020.103940
  34. Reynolds, L., & McDonell, K. (2021). Prompt programming for large language models: Beyond the few-shot paradigm. Paper presented at the Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3560815
  35. Røkenes, F.M., & Krumsvik, R.J. (2016). Prepared to teach ESL with ICT? A study of digital competence in Norwegian teacher education. Computers & Education, 97, 1-20. https://doi.org/10.1016/j.compedu.2016.02.014
  36. Short, C.E., & Short, J.C. (2023). The artificially intelligent entrepreneur: ChatGPT, prompt engineering, and entrepreneurial rhetoric creation. Journal of Business Venturing Insights, 19, https://doi.org/10.1016/j.jbvi.2023.e00388
  37. Smith, C.S. (2023). Mom, Dad, I Want To Be A Prompt Engineer. Retrieved from https://www.forbes.com/sites/craigsmith/2023/04/05/mom-dad-i-want-to-be-a-prompt- engineer/?sh=5cf4150d59c8 on April 20, 2023.
  38. Štaka, Z., Vuković, M., & Vujović, V. (2022). The Role of Digital Competencies in the Process of Digital Transformation. Paper presented at the 2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH). https://doi.org/10.1109/INFOTEH53737.2022.9751285
  39. Vuorikari Rina, R., Kluzer, S., & Punie, Y. (2022). DigComp 2.2: The Digital Competence Framework for Citizens-With new examples of knowledge, skills and attitudes. Retrieved from https://publications.jrc.ec.europa.eu/repository/handle/JRC128415 on April 25, 2023.
  40. Wach, K., Duong, C.D., Ejdys, J., Kazlauskaitė, R., Korzynski, P., Mazurek, G., Paliszkiewicz, J., & Ziemba, E. (2023). The dark side of generative artificial intelligence: A critical analysis of controversies and risks of ChatGTP. Entrepreneurial Business and Economics Reviews, 11(2), 7-30. https://doi.org/10.15678/EBER.2023.110201
  41. Wang, J., Shi, E., Yu, S., Wu, Z., Ma, C., Dai, H., Yang, Q., Kang, Y., Wu, J., Hu, H., Yue, C., Zhang, H., Liu, Y., Li, X., Ge, B. Zhu, D. Yuan, Y. Shen, D., Liu, T. & Zhang, S. (2023). Prompt Engineering for Healthcare: Methodologies and Applications. arXiv preprint arXiv:2304.14670. https://doi.org/10.48550/arXiv.2304.14670
  42. Wang, X., Zhang, R., Wang, Z., & Li, T. (2021). How does digital competence preserve university students' psychological well-being during the pandemic? An investigation from self-determined theory. Frontiers in Psychology, 12, 652594. https://doi.org/10.3389/fpsyg.2021.652594
  43. White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnasharx, A., Spencer-Smith, J., & Schmidt, D.C. (2023). A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382. https://doi.org/10.48550/arXiv.2302.11382
  44. Zamfirescu-Pereira, J., Wong, R.Y., Hartmann, B., & Yang, Q. (2023). Why Johnny can't prompt: how non-AI experts try (and fail) to design LLM prompts. Paper presented at the Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3544548.3581388
  45. Zhou, C., He, J., Ma, X., Berg-Kirkpatrick, T., & Neubig, G. (2022). Prompt consistency for zero-shot task generalization. arXiv preprint arXiv:2205.00049. https://doi.org/10.48550/arXiv.2302.04023
Cited by
Show
ISSN
2353-883X
Language
eng
URI / DOI
http://dx.doi.org/10.15678/EBER.2023.110302
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu